GOLD NANOPARTICLES AND MICROWAVE IRRADIATION INHIBIT IRREVERSIBLY THE A β_{1-42} AMYLOIDOGENESIS

E. Araya^a, I. Olmedo^a, N. G. Bastus^b, <u>S. Guerrero^{a,c}</u>, V. F. Puntes^b, E. Giralt^d, M. J. Kogan^{a,e} ^aFacultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Olivos 1007, Independencia, Santiago. ^bInstitut Català d`Estudis i Recerca Avançada, Bellaterra, Barcelona, Spain. ^cUsach. ^dInstitut de Recerca Biomèdica de Barcelona, Spain. ^eCentro para la Investigación Interdisciplinaria Avanzada en Ciencias de Materiales, Santiago Chile. mkogan@ciq.uchile.cl

In a recent report, we demonstrated the feasibility of remote deposit redissolving by using the local heat dissipated by gold nanoparticles (AuNP) selectively attached to $A\beta_{1-42}$ (a protein involved in Alzheimer's disease) toxic fibrils, when irradiated with microwaves (MW) [1]. Although the mature fibril was once assumed to be the biologically toxic species, it has recently been hypothesized that soluble intermediates are most damaging [2]. In this study, we selectively bound AuNP to soluble aggregation intermediates of $A\beta_{1-42}$ (A β PIAA) and investigated the effect of MW irradiation on the amyloidogenic process. AuNPs were attached selectively to the amyloidogenic A β_{1-42} structures. The samples were then irradiated in a cupper resonating chamber using a 14 GHz RF signal and 100 mW power. After irradiation, the samples were incubated for 48 h at room temperature to allow fibril formation and assess whether the amyloidogenic capacity of PIAA is altered determining fibril formation by ThT assay and by transmission electronic microscopy (TEM) [3].

MW and AuNP linked to peptides like CLPFFD that selectively attaches to amyloidogenic $A\beta_{1-42}$ structures, inhibit irreversibly their normal aggregation (Figure). Our approach provides a viable means to inhibit irreversibly the amyloidogenic process of A β . This principle could be used for therapeutically purposes by inhibiting locally and remotely the amyloidogenic process.

Acknowledgements: The authors acknowledge the funding from projects FONDECYT 1061142 and FONDAP 11980002 (17 07 0002).

References:

[1] Kogan M. J.; Turiel A.; Bastus, N. G.; Amigo, R.; Grillo-Bosch, D.; Araya, E.; Turiel, A.; Labarta, A.; Giralt, E.; Puntes, V. F. Nano Lett. **6** (2006) 110.

[2] Kayed R.; Head E.; Thompson J.L.; McIntire T.M.; Milton S.C.; Glabe C.G. Science **300** (2003) 486.

[3] Araya E, Olmedo I, Bastus N., Guerero S., Puntes V., Giralt E. Kogan MJ (Submitted, 2008).

Figure:

TEM micrograph of A β PIAA/AuNP with or without irradiation and incubation.