Molecular Quantum-dot Cellular Automata

Craig S. Lent University of Notre Dame

ND Collaborators:

Greg Snider (EE) Alex Kandel (Chem) Ken Henderson (Chem) Thomas Fehlner (Chem) Yuhui Lu (EE & Chem) Erik Blair (EE) Alexei Orlov (EE) Mike Niemier (CS)

International Collaborators:

Claude Lapinte (Chem, Univ. of Rennes, France) Ismo Hänninen (Computer Science, Univ. of Tampere, Finland) Konrad Walus, (EE, Univ. of British Columbia, Canada)

Supported by National Science Foundation

Outline of presentation

- Quantum-dot Cellular Automata
 - Motivation
 - Basic operations
 - Realizations
- Clocked molecular QCA
 - Theory
 - Measurement
- Synthesis of candidate molecules

Requirements for integrated molecular devices

- Ultra-low power dissipation
- Nano-integration: connect many devices together
- Power gain: must restore signal levels stage-to-stage
- Robustness: overcome variations and defects

Power dissipation

Power dissipation is the main limiter.

Dream molecular transistors

Molecular densities: $1nm \times 1nm \rightarrow 10^{14}/cm^2$

Transistors at molecular densities

Suppose in each clock cycle a *single* electron moves from power supply (1V) to ground.

Transistors at molecular densities

Suppose in each clock cycle a *single* electron moves from power supply (1V) to ground.

Power dissipation (Watts/cm²)

Frequency (Hz)	10 ¹⁴ devices/cm ²	10 ¹³ devices/cm ²	10 ¹² devices/cm ²	10 ¹¹ devices/cm ²
10 ¹²	16,000,000	1,600,000	160,000	16,000
10 ¹¹	1,600,000	160,000	16,000	1,600
10 ¹⁰	160,000	16,000	1,600	160
10 ⁹	16,000	1600	160	16
10 ⁸	1600	160	16	1.6
10 ⁷	160	16	1.6	0.16
10 ⁶	16	1.6	0.16	0.016

ITRS roadmap: 7nm gate length, 10⁹ logic transistors/cm² @ 3x10¹⁰ Hz for 2016

Transistors at molecular densities

Suppose in each clock cycle a *single* electron moves from power supply (1V) to ground.

Power dissipation (Watts/cm²)

Frequency (Hz)	10 ¹⁴ devices/cm ²	10 ¹³ devices/cm ² (10 ¹² devices/cm ²	10 ¹¹ devices/cm ²
10 ¹²	16,000,000	1,600,000	160,000	16,000
1011	1,600,000	160,000 (16,000	1,600
10 ¹⁰	160,000	16,000	1,600	160
10 ⁹	16,000	1600	160	16
10 ⁸	1600	160	16	1.6
10 ⁷	160	16	1.6	0.16
10 ⁶	16	1.6	0.16	0.016

ITRS roadmap: 7nm gate length, 10⁹ logic transistors/cm² @ 3x10¹⁰ Hz for 2016

Power Density

Trends

Heat limits clock speed

Solution: Change the way information is represented

Current switch

Solution: Change the way information is represented

" 1"

Represent binary information by charge configuration of cell.

QCA cell

- Dots localize charge
- Two mobile charges
- Tunneling between dots
- Clock signal varies relative energies of "active" and "null" dots

active

"**∩**"

Neighboring cells tend to align in the same state.

"1"

"null"

Neighboring cells tend to align in the same state.

Neighboring cells tend to align in the same state.

This is the COPY operation.

Three input majority gate can function as programmable 2-input AND/OR gate.

QCA cell-cell response function

QCA single-bit full adder

Hierarchical layout and design are possible. Simple-12 microprocessor (Kogge & Niemier)

"1"

"0"

QCA devices and circuits exist

Metal-dot QCA implementation

"dot" = metal island

70-300 mK

Greg Snider, Alexei Orlov, and Gary Bernstein

Metal-dot QCA cells and devices

Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, *Science* **284**, pp. 289-291 (1999).

QCA Shift Register

Schematic Diagram

SEM Micrograph

Metal-dot QCA devices exist

- Single electron analogue of molecular QCA
- Gates and circuits:
 - Wires
 - Shift registers
 - Inverters
 - AND, OR, Majority gates
 - Fan-out, Fan-in
 - Power gain demonstrated
 - Isolation of input from output
- Work underway to raise operating temperatures

QCA Power Dissipation

QCA architectures might operate at densities of 10¹² devices/cm² and 100GHz without melting the chip.

QCA implementations

- Semiconductor-dot QCA
- Metal-dot QCA
- Molecular QCA
- Magnetic QCA

GaAs-AlGaAs QCA cell

APPLIED PHYSICS LETTERS 91, 032102 (2007)

Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructure

F. Perez-Martinez,⁴⁾ I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, S. J. Chorley, and C. G. Smith *Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom*

(Received 24 April 2007; accepted 21 June 2007; published online 17 July 2007)

The authors report on the experimental demonstration of a GaAs/AlGaAs-based quantum cellular automata cell fabricated using electron beam lithographically defined gates. These surface metallic gates form a pair of double quantum dots, as well as a pair of quantum point contacts (QPCs) that act as noninvasive voltage probes. Measurements at cryogenic temperatures show that an electron transfer in the input dots induces the relocation of a single electron in the output dots. Using the QPCs they were also able to determine the operating limits of the cell. © 2007 American Institute of Physics. [DOI: 10.1063/1.2759257]

- Dots defined by top gates depleting 2DEG
- Direct measurement of cell switching

Silicon P-dot QCA cell

APPLIED PHYSICS LETTERS 89, 013503 (2006)

Demonstration of a silicon-based quantum cellular automata cell

M. Mitic,^{a)} M. C. Cassidy, K. D. Petersson,^{b)} R. P. Starrett, E. Gauja, R. Brenner, R. G. Clark, and A. S. Dzurak

Centre for Quantum Computer Technology, School of Electrical Engineering and School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia

C. Yang and D. N. Jamieson

Centre for Quantum Computer Technology, School of Physics, University of Melbourne, Victoria 3010, Australia

(Received 8 March 2006; accepted 18 May 2006; published online 5 July 2006)

We report on the demonstration of a silicon-based quantum cellular automata (QCA) unit cell incorporating two pairs of metallically doped (n^+) phosphorus-implanted nanoscale dots, separated from source and drain reservoirs by nominally undoped tunnel barriers. Metallic cell control gates, together with Al–AlO_x single electron transistors for noninvasive cell-state readout, are located on the device surface and capacitively coupled to the buried QCA cell. Operation at subkelvin temperatures was demonstrated by switching of a single electron between output dots, induced by a driven single electron transfer in the input dots. The stability limits of the QCA cell operation were also determined. © 2006 American Institute of Physics. [DOI: 10.1063/1.2219128]

- Dots defined by implanted phosphorus
- Single-donor creation foreseen
- Direct measurement of cell switching

FIG. 1. (Color online) (a) Simplified circuit equivalent of the QCA cell, (b) SEM image of phosphorus-implanted n^+ regions (dark in image), and (c) SEM image of completed device. The buried n^+ dots and leads are marked using dashed lines.

Single-atom quantum dots

Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature

M. Baseer Haider[†],^{*} Jason L Pitters,[†] Gino A. DiLabio, Lucian Livadaru,^{*} Josh Y Mutus,^{*} and Robert A. Wolkow^{*} National Institute for Nanotechnology, National Research Council of Canada 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada[‡] (Dated: October 11, 2008)

Single-atom quantum dots

Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature

M. Baseer Haider[†],^{*} Jason L Pitters,[†] Gino A. DiLabio, Lucian Livadaru,^{*} Josh Y Mutus,^{*} and Robert A. Wolkow^{*} National Institute for Nanotechnology, National Research Council of Canada 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada[‡] (Dated: October 11, 2008)

Magnetic QCA

SCIENCE VOL 311 13 JANUARY 2006

Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata

A. Imre, 14 G. Csaba, 2 L. H. A. Orlov, 3 G. H. Bernstein, 3 W. Porod 3

We describe the operation of, and demonstrate logic functionality in, networks of physically coupled, nanometer-scale magnets designed for digital computation in magnetic quantum-do cellular automata (MQCA) systems. MQCA offer low power dissipation and high integration density of functional elements and operate at room temperature. The basic MQCA logic gate that is, the three-input majority logic gate, is demonstrated.

- Dots defined by magnetic domains
- Room temperature operation

From metal-dot to molecular QCA

Metal tunnel junctions

Key strategy: use *nonbonding* orbitals (π or d) to act as dots.

Molecular 3-dot cell

For the molecular cation, a hole occupies one of three dots.

Charge configuration represents bit

Use local electric field to switch molecule between active and null states.

Clocking field alters response function

- Clocking field negative
- Positive charge in bottom dot
- Cell is inactive no response to input

- Clocking field positive (or zero)
- Positive charge in top dots
- Cell is active nonlinear response to input

Clocked Molecular QCA

individual molecules.

Molecular clocking

Wire sizes can be 10-100 times larger than molecules.

Clocking field

Molecular circuits and clocking wires

Molecular circuits and clocking wires

Molecular circuits and clocking wires

Universal floorplan

Peter Kogge

QCA design tools

QCADesigner

Konrad Walus U. British Columbia

QCADesigner screenshot showing a simple 4-bit processor layout.

Design tools are starting to enable new systems ideas.

System + Application Architectures

Mike Niemier

Device architecture maps well to many system architectures ...

Systolic

General Purpose

ology

QCA molecular systems

- ✓ Diallyl double-dot (Aviram)
- ✓ Clocked tri-allyl
 - Ru-Fc double dot (Fehlner)
 - Ru-Ru double dot (Fehlner)
 - Fc 4-dot system (Fehlner)

synthesized

Experiments on molecular double-dot

Fe group and Ru group act as two unequal quantum dots.

Surface attachment and orientation

Molecule is covalent bonded to Si and oriented vertically by "struts."

Measurement of molecular bistability

layer of molecules

Applied field equalizes the energy of the two dots

NOTRE DAME

Switching by an applied field

Molecule-molecule interaction

Can one molecule switch another molecule?

Switching by a neighboring molecule

One molecule *can* switch a neighboring molecule.

Longer molecular double-dot

Double-dot click-clack

Square 4-dot QCA molecules

Published on Web 06/03/2003

Building Blocks for the Molecular Expression of Quantum Cellular Automata. Isolation and Characterization of a Covalently Bonded Square Array of Two Ferrocenium and Two Ferrocene Complexes

Jieying Jiao,† Gary J. Long,** Fernande Grandjean,* Alicia M. Beatty,† and Thomas P. Fehlner*,†

Department of Chemistry & Biochemistry, University of Note Dame, Note Dame, Indiana 46356-3670, Department of Chemistry, University of Missouri—Rolla, Rolla, Missouri 55409-0010, and Department of Physics, B5, University of Liege, B-4000 Sart-Tilman, Belgium

Received March 10, 2003; E-mail feniner 1(gnd edu

The utilization of molecules as components of electronic circuits has raught the imagination of many.¹ The temptation to look for molecular mimics of existing electronic components is strong; however, molecules are exceedingly poor charge conductors and resistive leading rules out high device densities—the primary justification of the approach. On the other hand, molecules are excellent charge containers and a novel paradigm, quantum cellular automata (QCA), which is based on field-coupled charge containers, has been proven theoretically as well as operationally at low temperature using 50 mm quantum dots.³⁻⁴ Systems based on 2 nm dots are expected to operate at room temperature, hence, our interest in developing molecular expressions of the QCA paradigm.¹

The smallest building block of QCA wires consists of two dots containing a single mobile electron. At the molecular level this building block is a mixed-valence complex about which much is known.6-8 A more versatile building block for constructing QCA circuits is a square of four electronically coupled dots containing two mobile electrons. Although molecular squares containing redox. active metal centers have been described⁹⁻¹⁸ and mixed-valence complexes up to nuclearity three have been thoroughly analyzed.^{8, 5} there is no example of an isolated four-metal, mixed-valence complex containing two mobile electrons in a square geometry. The independent existence and compatible electronic properties of such a species are of fundamental importance to the realization of the OCA paradigm. Here we report the full characterization of a symmetrical source containing two ferrocene and two ferrocenium moteties possessing measured properties that make it suitable for use as a component for charge-coupled QCA circuits.

The basic requirements to be met by a molecular QCA cell are nots consisting of metal complexes possessing two stable redox states, a planar array of four such complexes with 4-fold symmetry. Figure 1. Molecular structure of (1)[PFs]) Fe+Fe edge distance 5.980 A. The η^4 -CsHs ring bound to the Contom (green) is not shown for clarity

Figure 2. Cyclic and square wave voltametry of 1 at 100 mv/s on a Pt electrode in $CH_2CI_2CH_3CN$ mixed solvent, $TBA[PF_3]$ electrolyte, and Pt wire reference electrode $(E_{1,4}[FCH^+]FCH] = 0.344$ V). The solid and open dots in the diagrams represent Fe(II) and Fe(III), respectively.

0.6 nm

Bistable configurations

"0"

"1"

Guassian-98 UHF/STO-3G/LANL2DZ

Switching molecule by a neighboring molecule

Coulomb interaction is sufficient to couple molecular states.

Lapinte group synthesis

para-Fe2

Kandel Group

Neutral

335 Å x 137 Å -1 V, 5 pA

2 V, 10 pA

54 Å x 48 Å

Mixed Valence

54 Å x 48 Å Synthesis: Lapinte

meta-Fe2

Kandel Group

Neutral

175 Å x 179 Å 0.5 V, 20 pA

66 Å x 61 Å

Mixed Valence

175 A x 179 A 1 V, 5 pA

66 A x 61 A

Synthesis: Lapinte

Imaging and modeling STM

m-Fe2

p-Fe2

Kandel Group

Mixture of Mixed-Valence *meta*-Fe2 and *para*-Fe2

162 Å x 159 Å -2 V, 100 pA

UNIVERSITY OF NOTRE DAME

335 Å x 137 Å 2 V, 10 pA

Synthesis: Lapinte

Mixed-Valence p-Fe2 and m-Fe2

Mixed-Valence p-Fe2

Kandel Group

Mixture of Mixed-Valence *meta*-Fe2 and *para*-Fe2

162 Å x 159 Å -2 V, 100 pA

175 Å x 179 Å 1 V, 5 pA

Synthesis: Lapinte

Mixed-Valence p-Fe2 and m-Fe2

Mixed-Valence m-Fe2

Mixture of Mixed-Valence Kandel Group meta-Fe2 and para-Fe2

NOTRE DAME

Kandel Group

Neutral Fe3

Neutral Fe3, 81 Å x 58 Å 2 V, 10 pA

Neutral Fe3, 187 Å x 91 Å 2 V, 10 pA

Synthesis: Lapinte

Mixed-Valence Fe3⁺

Kandel Group

Preliminary experiments for tip-induced intramolecular electron transfer

Decrease tipsample distance (increase tunneling current)

Snider Group

Ultra-Sensitive Electrometers

Dot electrometers can detect 2% of elementary charge.

Using closo-borate as self dopant

Center for Nanoscience and Technology

Response function

Coulomb interaction is sufficient to couple molecular states at room temperature.

Center for Nanoscience and Technology

Requirements for integrated molecular devices

- Ultra-low power dissipation
- Nano-integration: connect many devices together
- Power gain: must restore signal levels stage-to-stage
- Robustness: overcome variations and defects

Conclusions

- QCA offers possible path to limits of downscaling molecular computing.
 - General-purpose computing
 - Low power dissipation which is essential
- QCA devices: metallic, molecular, magnetic, semiconductor.
- Molecular implementations focus: mixed-valence systems
 - synthesis
 - STM imaging
 - electrical measurement
 - mixed valence zwitterions

Thanks for your attention.

