Bellaterra: January 2011

Architecture & Design of Molecule Logic Gates and Atom Circuits

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Fernando LUIS

Instituto de Ciencia de Materiales de Aragón (Zaragoza, Spain)

Molecular design of CNOT and SWAP quantum gates

Integration of SMM into superconducting microdevices

Molecular design of CNOT and SWAP quantum gates

Integration of SMM into superconducting microdevices

Quantum computers

Richard Feynman, 1982

Quantum processing of information

 $Bit \rightarrow Qubit$

Molecular qubits

Molecular qubits

CNOT (universal) quantum logic gate

CNOT quantum logic gate

Dinuclear [Tb]₂ complex

Linked to three asymmetric H_3L ligands

Two anisotropic spins in different coordinations

Definition of qubit states

[LaTb]
$$J = 6, q_1 = 3/2$$

Definition of qubit states

Definition of qubit states

Coupling between the Tb³⁺ qubits

Coupling between the Tb³⁺ qubits

δ = 66 degrees

Noncollinear anisotropy axes

 δ = 66 degrees

Noncollinear anisotropy axes

3

δ = 66 degrees

Noncollinear anisotropy axes

All ingredients are met!

[Tb]₂ as a CNOT logic gate

Implementation by EPR

CNOT transitions are not forbidden

SWAP gate operations are also possible!

F. Luis et al, Phys. Rev. Lett. 107, 117203 (2011).

Quantum coherence? (X-band pulsed EPR)

Outline

Molecular design of CNOT and SWAP quantum gates

Integration of SMM into superconducting microdevices

Hybrid quantum computation architectures

Magnetic qubits as hardware for quantum computers.

J. Tejada, E. M. Chudnovsky, E. del Barco, J. M. Hernandez and T. P. Spiller, Nanotechnology **12** (2001) 181–186

Cavity QED Based on Collective Magnetic Dipole Coupling:

Spin Ensembles as Hybrid Two-Level Systems. Atac Imamoglu, PRL **102**, 083602 (2009)

The goal: maximizing the flux coupling

1. Scaling down the dimensions of the loop

2. Playing with the sample position !!!

"The first challenge is the placement of a single nanoparticle close to the nanoSQUID while achieving sufficient magnetic coupling between the particle and the device"

C. P. Foley and H. Hilgenkamp. Supercond. Sci. Technol. 22, 064001 (2009).

The device: microSQUID ac susceptometer

The tool: Dip pen nanolithography

The sample: ferritin-based nanomagnets (CoO)

2 nm sized Antiferromagnetic particle

Direct deposition on the most sensitive areas

Detection of the linear response of a SMM monolayer

Towards the implementation of quantum computation architectures

Magnetic qubits as hardware for quantum computers.

J. Tejada, E. M. Chudnovsky, E. del Barco, J. M. Hernandez and T. P. Spiller, Nanotechnology **12** (2001) 181–186

Cavity QED Based on Collective Magnetic Dipole Coupling:

Spin Ensembles as Hybrid Two-Level Systems. Atac Imamoglu, PRL **102**, 083602 (2009)

CONCLUSIONS

• [LnLn'] clusters, designed and synthesized via coordination chemistry, meet the following ingredients

- proper definition of qubit states
- weak AF coupling between qubits
- magnetic asymmetry molecular prototypes for CNOT quantum gates

• SWAP gate operations can be performed in the same molecule

• Dip pen nanolithography offers a very attractive tool to integrate molecular qubits into superconducting microdevices: towards the implementation of quantum architectures

María José

UNIVERSITATION BARCELONA

Química Inorgànica

Martínez

Olivier Roubeau

David

Zueco

Marco Evangelisti

Agustín Camon

CERS

Guillem Aromí (et al.)

Dietmar Drung

Thomas Schurig

Instituto de Nanociencia de Aragón

Rosa Cordoba

Ana Isabel Lostao

CENTRE D'INVESTIGACIÓ EN NANOCIÈNCIA I NANOTECNOLOGIA CAMPUS UAB. BELLATERRA. BARCELONA

Elena Bellido

Daniel Ruiz

