A model for inelastic transport through atomic surface wires

Serge Monturet Centre d'Elaboration de Matériaux et d'Etudes Structurales

CEMES - CNRS - Toulouse

AtMol International Workshop 2012, Barcelona, Spain

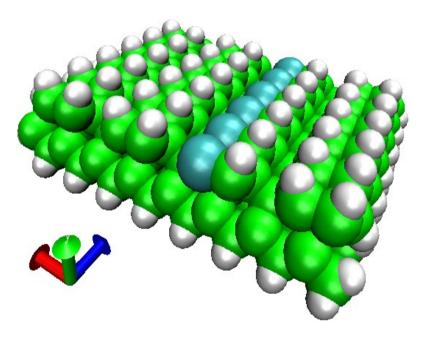
A model for inelastic transport through atomic surface wires

- 1. Short introduction
- 2. Random distortion of the wire
- 3. Mixed quantum/classical dynamics
- 4. A quantum model for transitions

1. Atomic wires

One dimensional atomic wire : dangling bond wire at the SiH surface

Transport calculation and heating

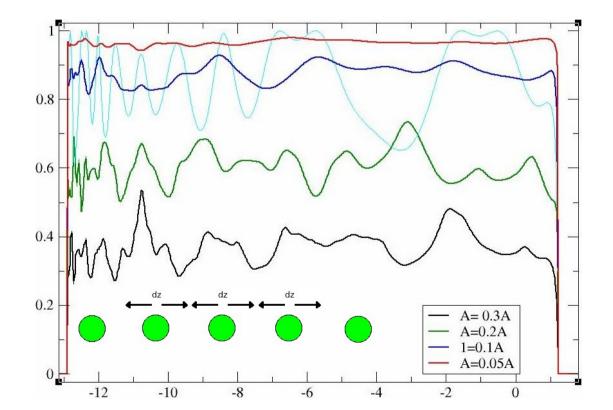


2. Random distortions

Linear atomic gold wire

Displacements are given by a uniform random distribution.

The curves show the dependence of the transmission on the amplitude of the displacements.



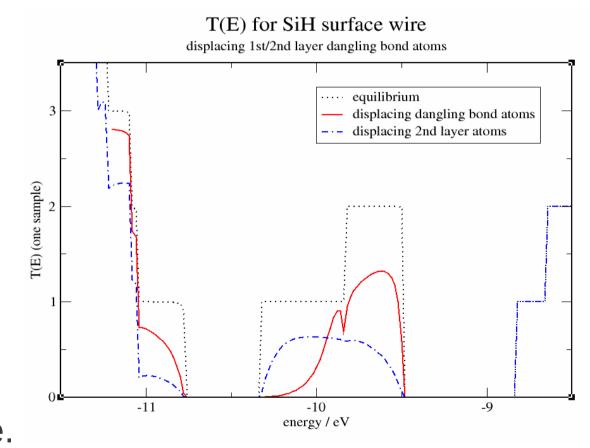
Work of Eeva Niemi in Toulouse, to be published.

2. Random distortions

1D dangling bond wire

Displacements are given by a uniform random distribution.

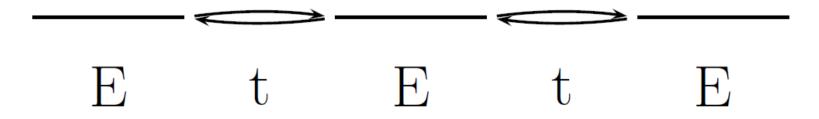
The curves show the dependence of the transmission on the number of atomic layers displaced. Maximum amplitude is 20% of the Si-Si distance.



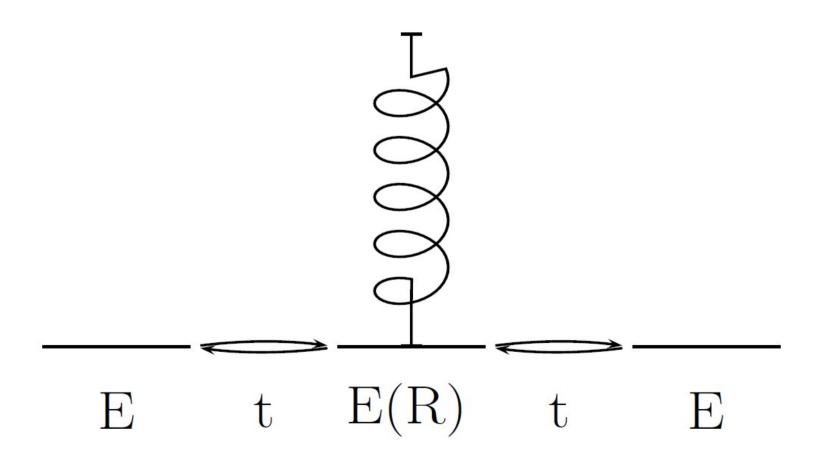
Work of Eeva Niemi in Toulouse, to be published.

The model

$$h = \left(\begin{array}{ccc} E & t & 0 \\ t & E & t \\ 0 & t & E \end{array} \right)$$



The model



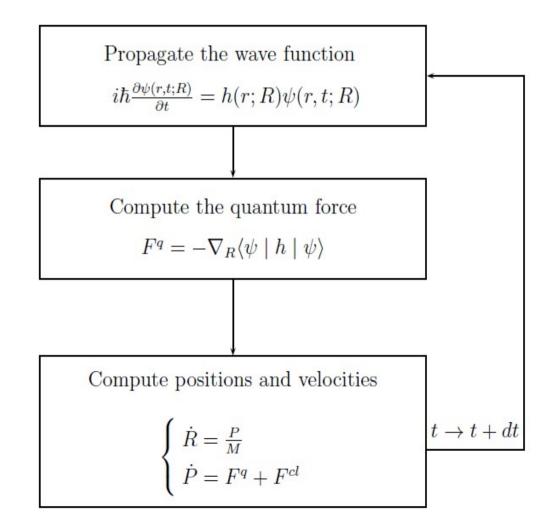
The model

$$h(R) = \begin{pmatrix} E & t & 0 \\ t & E(R) & t \\ 0 & t & E \end{pmatrix} \quad E(R) = e + \frac{1}{2}K(R - R_{eq})^2$$

→ <u>Nuclear coordinate</u> « R » representation, **classical** harmonic oscillator

→ <u>Electronic coordinate</u> State representation, explicit quantum dynamics

The method



3. Explicit dynamics

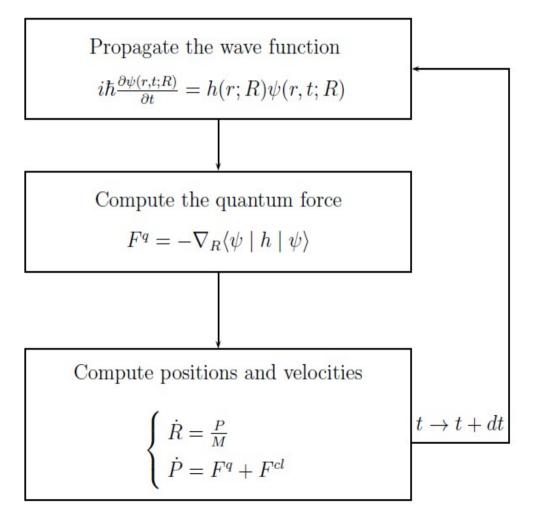
The method

Mean field theory guaratees the conseravtion of the total energy throughout the propagation

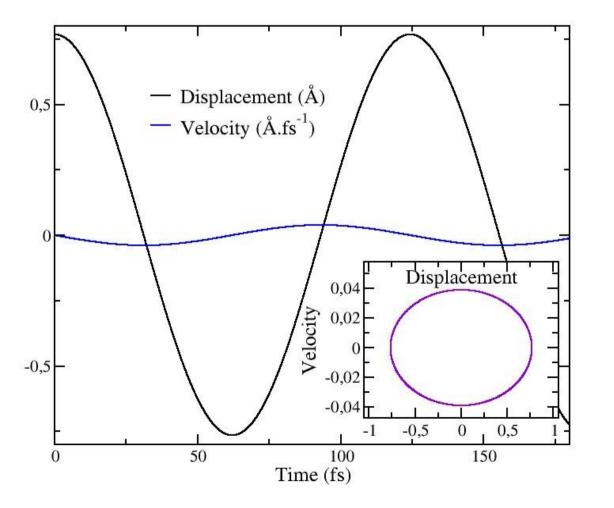
 <u>Electronic part</u>
 Direct diagonaisation or short iterative Lanczos

<u>Classical part</u>
 Velocity-corrected Verlet

Force
 Finite differences



Some results : positions ans velocities

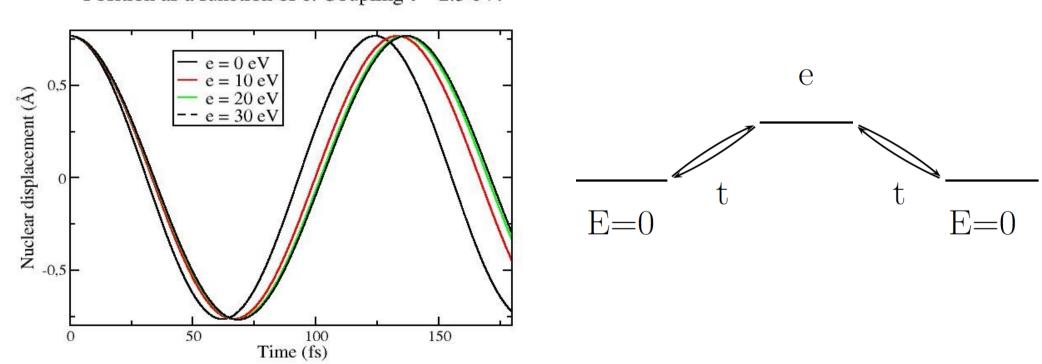


Frequency 30 meV (Barcelona's group result) Spring constant 6 eV.Å⁻² Time step 10⁻³ fs

Starting parameters

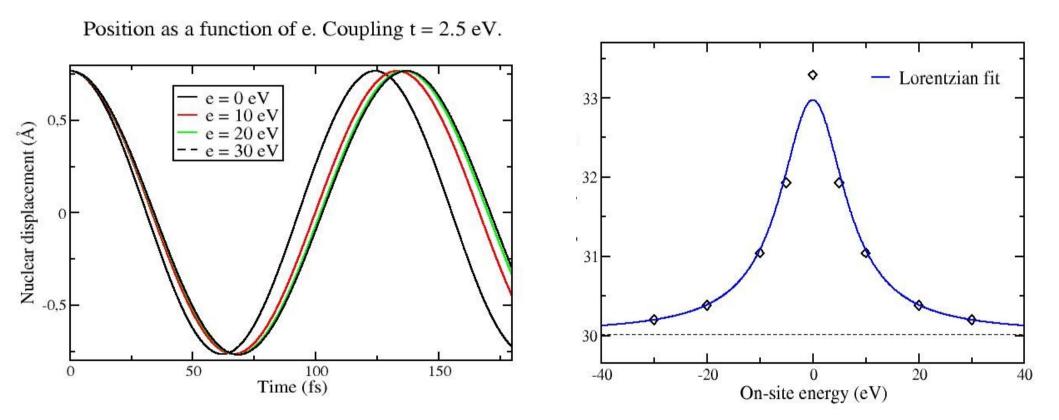
- Zero velocity
- Displacement : 20% of Si-Si distance along dangling bond rows

Some results : displacements



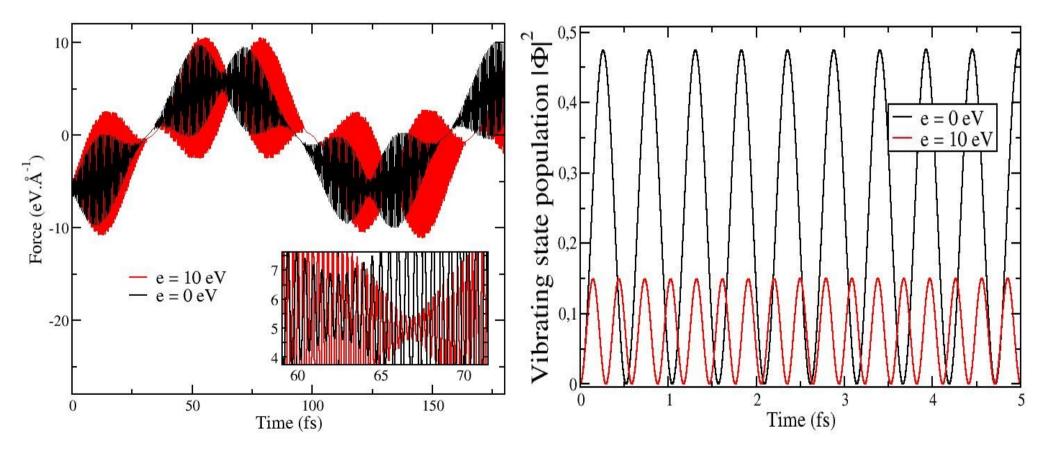
Position as a function of e. Coupling t = 2.5 eV.

Some results : displacements



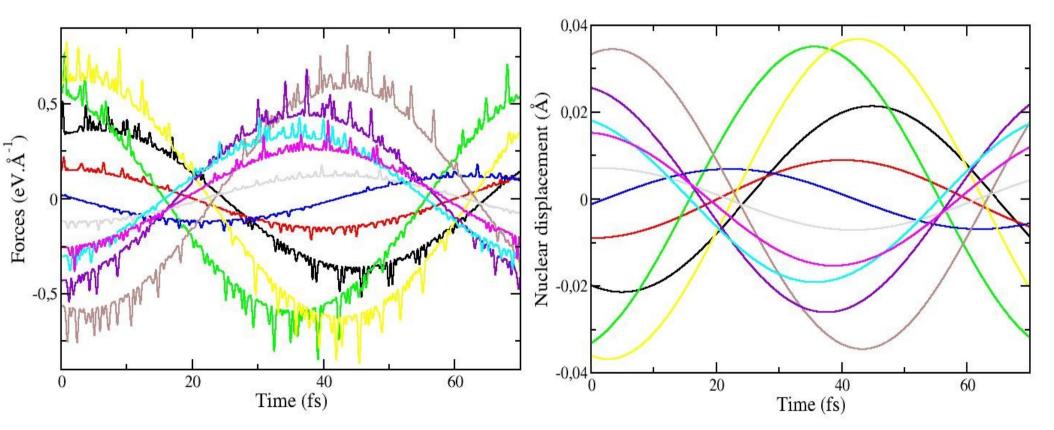
Some results : the force

e = 0 or 10 eV with coupling t = 2.5 eV



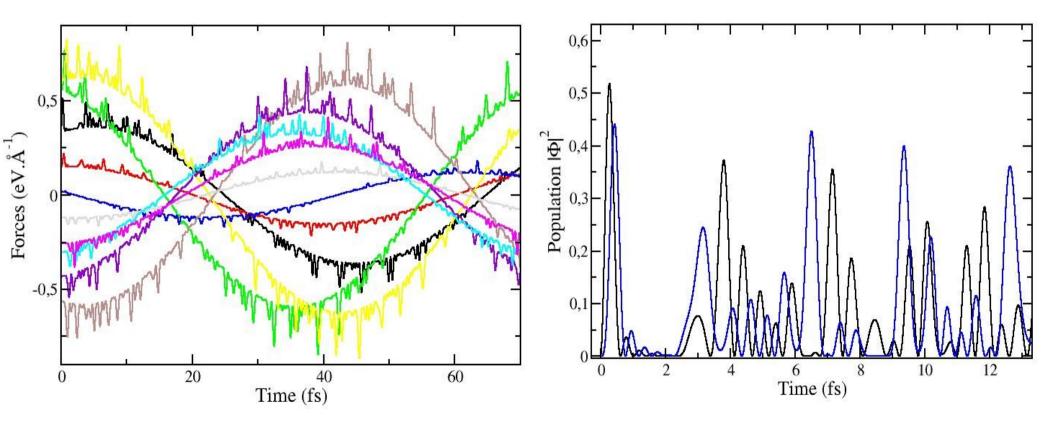
Calculations with 10 vibrating sites

Forces applied on each nuclei



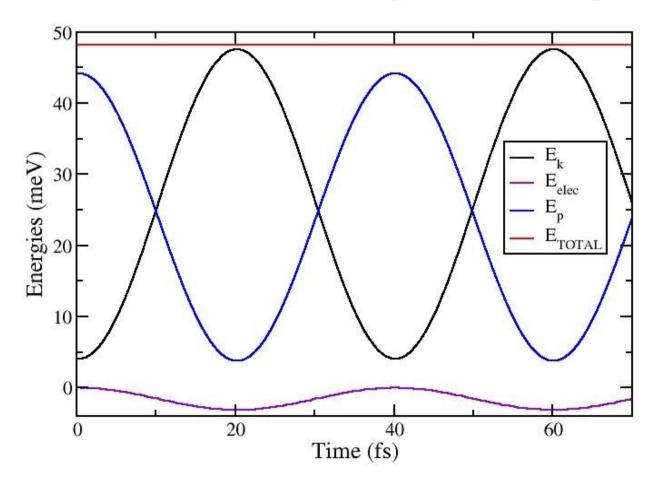
Calculations with 10 vibrating sites

Forces applied on each nuclei

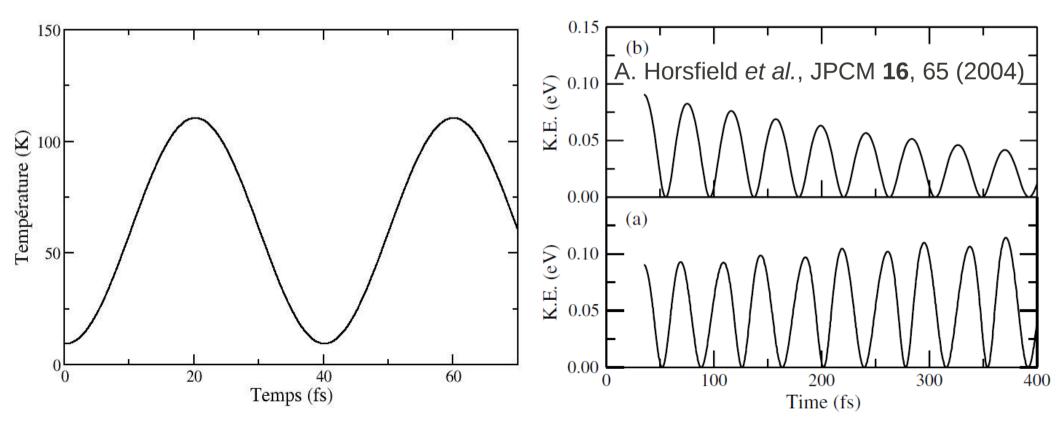


Calculations with 10 vibrating sites

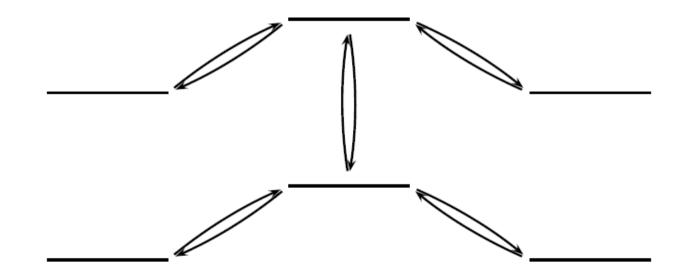
Ehrenfest dynamics: energy conservation plot



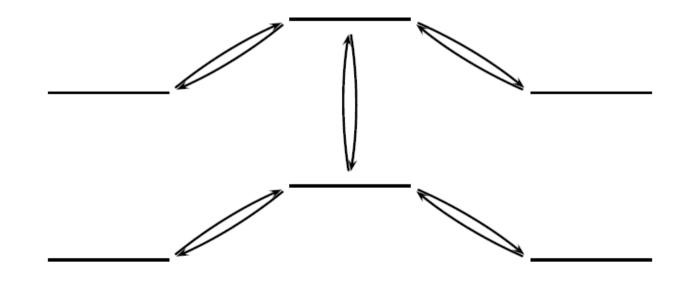
<u>Heating</u> : the electrons release energy to the nuclear degrees of freedom irreversibly



Motivation : Are there any rules for vibrational transitions?

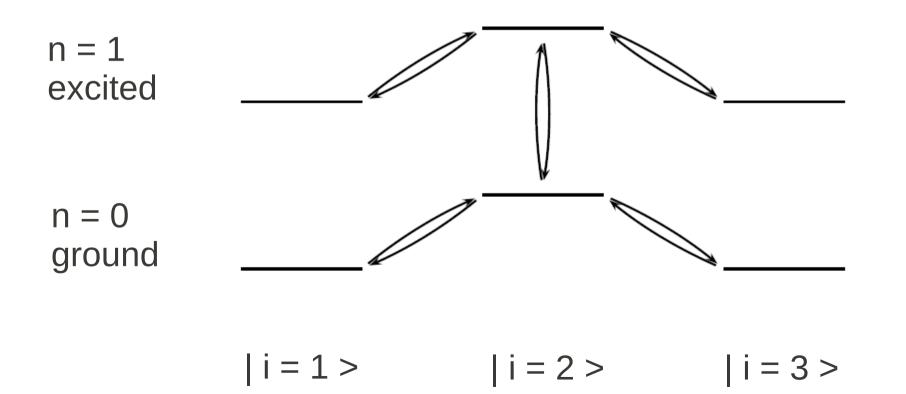


6 states : 3 electronic states coupled to a vibration (n=0, 1)



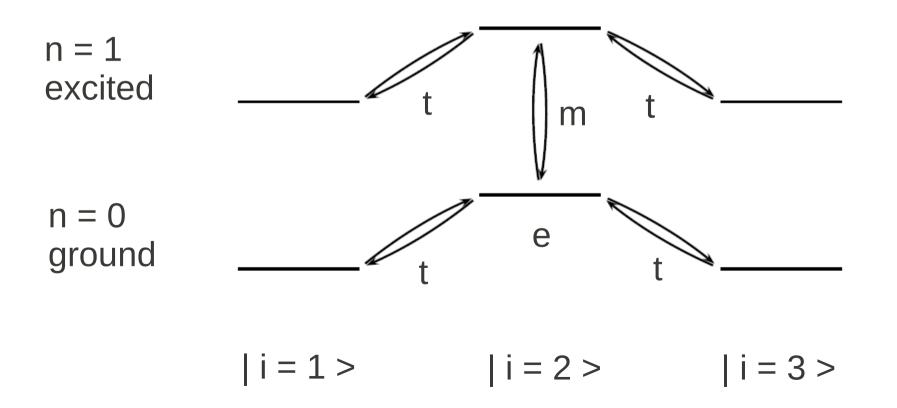
6 states : 3 electronic states coupled to a vibration (n=0, 1)

| i > x | n >

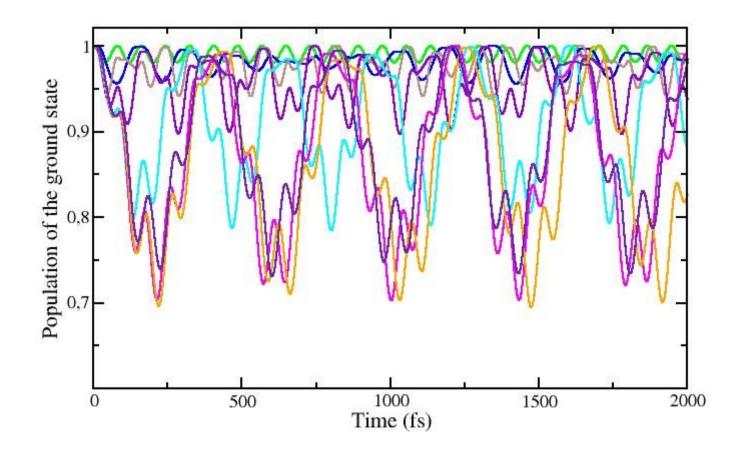


6 states : 3 electronic states coupled to a vibration (n=0, 1)

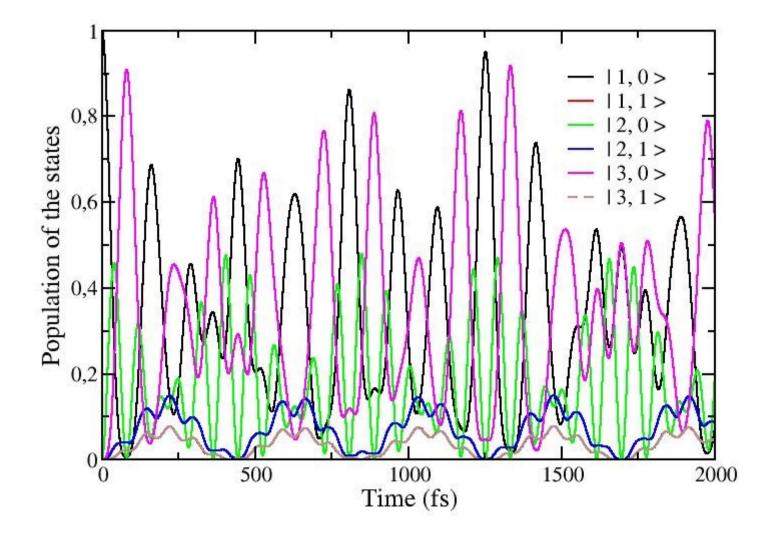
t : electronic coupling between states in each vibrational subspace m : vibrational coupling



Behaviour of the population of the ground state (n=0)



Populations of each individual state | i, n >



Calculation of the populations

$$\rho_{ii} = \langle i | \hat{\rho} | i \rangle = \langle i | | \Psi \rangle \langle \Psi | | i \rangle$$
$$_{ii} = \sum_{n,m} C_n(0) C_m^{\star}(0) \langle i | | n \rangle \langle m | | i \rangle e^{-i(\varepsilon_n - \varepsilon_m)t}$$

Calculation of the populations

$$\rho_{ii} = \langle i | \hat{\rho} | i \rangle = \langle i | | \Psi \rangle \langle \Psi | | i \rangle$$

$$\rho_{ii} = \sum_{n,m} C_n(0) C_m^{\star}(0) \langle i | | n \rangle \langle m | | i \rangle e^{-i(\varepsilon_n - \varepsilon_m)t}$$

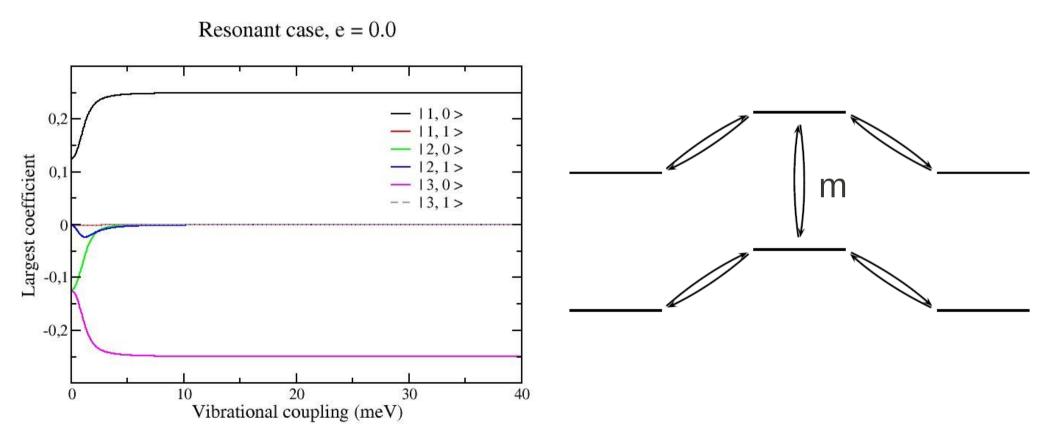
Coefficient associated to frequency $\omega_{_{nm}}$

Calculation of the populations

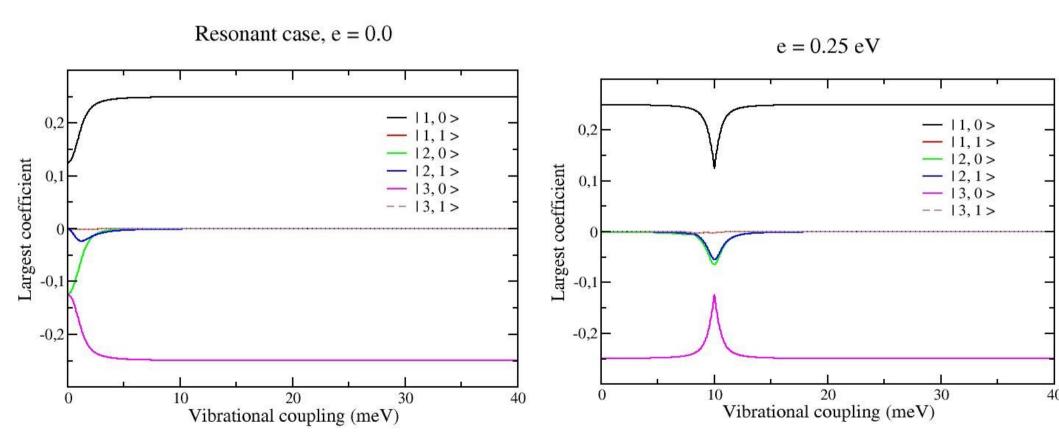
$$\rho_{ii} = \langle i | \hat{\rho} | i \rangle = \langle i | | \Psi \rangle \langle \Psi | | i \rangle$$

$$\rho_{ii} = \sum_{n,m} C_n(0) C_m^{\star}(0) \langle i | | n \rangle \langle m | | i \rangle e^{-i(\varepsilon_n - \varepsilon_m)t}$$
Coefficient associated to frequency ω_{nm}

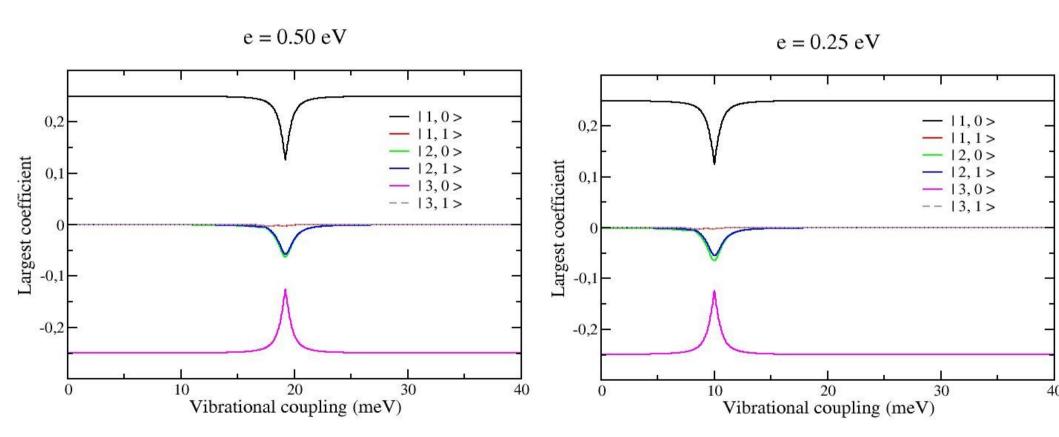
Largest coefficient as a function of the vibrational coupling m



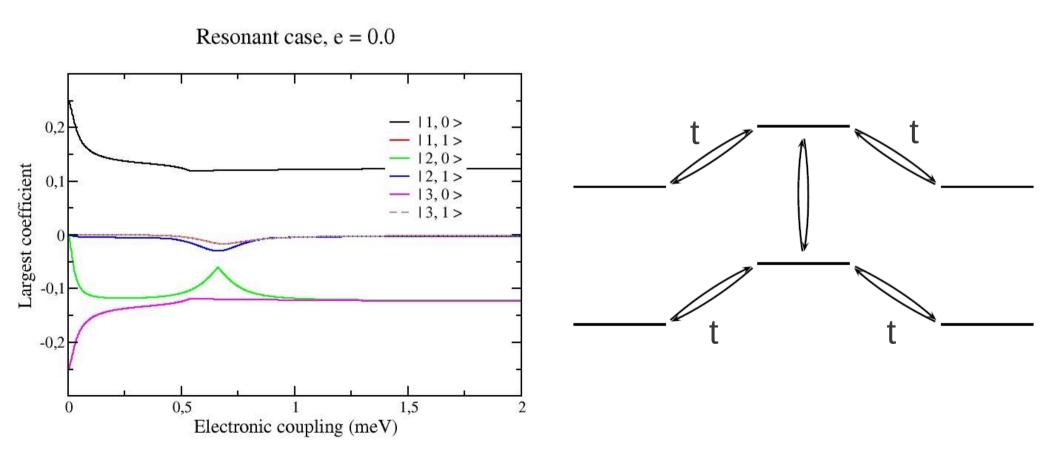
Largest coefficient as a function of the vibrational coupling m



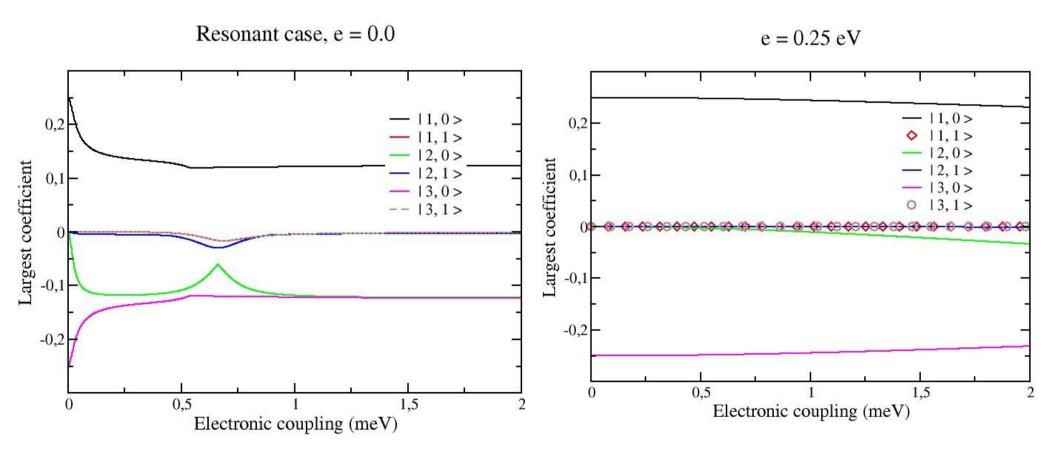
Largest coefficient as a function of the vibrational coupling m



Largest coefficient as a function of the electronic coupling t



Largest coefficient as a function of the electronic coupling t



Conclusions

Work in progress

Find a suitable model to describe dissipation in the quantum/classical model

Keep exploring the behaviour of the quantum model to find a suitable set of parameters and perhaps a rule

<u>Acknowledgements</u> : Christian Joachim

Funding : AtMol project

