Realizations of complex logic operations at the nanoscale

F. Remacle
University of Liège, Belgium

FP7 FET proactive Nano-ICT 215750 : New Functionalities

MOLOC

MOlecular LOgic Circuits

2nd AtMol meeting, January 2012

Objectives

Realize complex logic operations at the hardware level at the nanoscale
Beyond the switching paradigm :

- provide the foundation of a Post-Boolean approach
- provide new logic schemes that enables complex logic functions

Experimental realizations of

- logic circuits (Boolean) directly implemented at the hardware level
- multivalued logic circuits (ternary multiplier and ternary adder)
- search and identification function algorithm as a finite state machine

Quasi classical approach

- encode Boolean or multi-valued variables in the discrete charge, energy or conformational states of confined molecular or nano systems.
- provide inputs as a selective perturbation that induces specific transitions between these states.
- processing of information is performed by the quantum dynamics of the multi state system.
- the outputs are a probe of the final states.

Different from quantum computing : no information is encoded into the phase of the wave function.

Implementations of electrically addressed logic circuits at the hardware level

Transport through a single atom in a silicon transistor (SAT).

Sven Rogge 舒 ${ }^{\text {fuodif }}$
TU- Delft
School of Physics \& CQC²T University of New South Wales Australia

Assignment of the level spectrum of the As dopant atom from the stability maps of a FinFET transistor

Excited electronic states of a given charge As dopant

Lansberger et al, Nature Physics, 4 , 656 (2008)

Physical realization

 of a cascade of two full binary adders

1. SAT : half addition $\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}$ 2. CIB : FET + load resistor :
V_{i} is the arithmetic $\operatorname{sum} A_{i}+B_{i}+C_{i-1}$
2. A SET decodes the arithmetic sum to
a Boolean variable
-multivalued logic scheme -CMOS compatible -scalable

- each full addition requires 4 transistors reduces the number of switches by a factor 7
J.A. Mol, J. Verduijn, R. D. Levine, F. Remacle and S. Rogge, PNAS, 108, 13969 (2011).
M. Klein, G. P. Lansbergen, J. A. Mol, S. Rogge, R. D. Levine, and F. Remacle, ChemPhysChem. 10: 162-173, 2009.

Half addition performed by the SAT

- A and B are encoded as two values of V_{b} and V_{g}
- depending on these values,
zero level $(0,0) \quad$ contribute one level $(0,1)$ and $(1,0)$ two levels $(1,1)$ to the current

CIB and decoder to Boolean

$$
\mathrm{V}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}+\mathrm{V}_{\mathrm{i}-1}
$$

CIB : carry in buffer, made of

- a load resistor (converts $\mathrm{I}_{\mathrm{i}-1}$ to $\mathrm{V}_{\mathrm{i}-1}$)
- a carry in FET opened if the arithmetic sum, $\mathrm{V}_{\mathrm{i}-1}$, is larger than 1 ($\mathrm{C}_{\mathrm{i}}=1$).
- provides gain
$\mathrm{SET}_{\mathrm{i}}$ converts the a.s. to a Boolean signal. The conversion is implemented using the periodicity of the SET. V_{i} is applied to the gate of the SET and gives a current that corresponds to S_{i}
a.s is a four valued signal

A	B	$C_{\text {in }}$	a.s.	$C_{\text {out }}$	S
0	0	0	0	0	0
0	1	0	1	0	1
1	0	0	1	0	1
1	1	0	2	1	0
0	0	1	1	0	1
0	1	1	2	1	0
1	0	1	2	1	0
1	1	1	3	1	1

Perspective : engineer molecular structure in Silicon

effective mass model for the two dopant molecule

$$
\begin{aligned}
H(t)= & -\left[\frac{\hbar^{2}}{2 m_{\perp}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{\hbar^{2}}{2 m_{\|}} \frac{\partial^{2}}{\partial z^{2}}\right]+e \mathbf{F}(t) \cdot r-\sum_{i=1}^{2} \frac{e^{2}}{\varepsilon_{\mathrm{Si}} \sqrt{\left(x-x_{i}\right)^{2}+y^{2}+\left(z-z_{i}\right)^{2}}} \\
& +\sum_{i=1}^{2} \frac{Q e^{2}}{\varepsilon_{\mathrm{Si}} \sqrt{\left(x-x_{i}\right)^{2}+y^{2}+\left(z-z_{i}\right)^{2}}}-\frac{Q e^{2}}{4 \varepsilon_{\mathrm{Si}} z}
\end{aligned}
$$

Time - dependent Hamiltonian is solved on a 3D grid

$$
\left\{\begin{array}{l}
m_{\perp}=0.191 m_{e} \\
m_{\| \|}=0.916 m_{e}
\end{array} \quad Q=\left(\varepsilon_{\mathrm{SiO}_{2}}-\varepsilon_{\mathrm{Si}}\right) /\left(\varepsilon_{\mathrm{SiO}_{2}}+\varepsilon_{\mathrm{Si}}\right) \quad\left\{\begin{array}{l}
\varepsilon_{\mathrm{Si}}=11.4 \\
\varepsilon_{\mathrm{SiO}_{2}}=3.8
\end{array}\right.\right.
$$

Y. Yan, J. A. Mol, J. Verduijn, S. Rogge, R. D. Levine, and F. Remacle, J. Phys. Chem. C 114: 20380-20386, 2010.

Control of the localization of the charge by a static gate fieIu
hetero nuclear dopant molecule

GS

First excited state

Cyclable full adder implemented on dopant molecule addressed by a pulse gate voltage
first half addition

initial state	voltage pulse	XOR int sum	AND $(\mathrm{c} 1)$	INH
$\mathrm{L}^{+} \mathrm{R}(0)$	0	$\mathrm{~L}+\mathrm{R}(0)$	0	0
$\mathrm{~L}^{+} \mathrm{R}(0)$	1	$\mathrm{LR}^{+}(1)$	0	1
$\mathrm{LR}^{+}(1)$	0	$\mathrm{LR}^{+}(1)$	0	0
$\mathrm{LR}^{+}(1)$	1	$\mathrm{~L}+\mathrm{R}(0)$	1	0

second half addition

int sum	voltage pulse	XOR final sum	AND $(\mathrm{c} 2)$	INH
$\mathrm{L}^{+} \mathrm{R}(0)$	0	$\mathrm{~L}^{+} \mathrm{R}(0)$	0	0
$\mathrm{~L}^{+} \mathrm{R}(0)$	1	$\mathrm{LR}^{+}(1)$	0	1
$\mathrm{LR}^{+}(1)$	0	$\mathrm{LR}^{+}(1)$	0	0
$\mathrm{LR}^{+}(1)$	1	$\mathrm{~L}^{+} \mathrm{R}(0)$	1	0

AND : charge on right at $\mathrm{F}_{\text {max }}$
INH : charge on left at $\mathrm{F}_{\text {max }}$

Y. Yan, J. A. Mol, J. Verduijn, S. Rogge, R. D. Levine, and F. Remacle, J. Phys. Chem. C 114: 20380-20386, 2010.

Multivalued logic : implementation of ternary logic circuits

A ternary multiplier on a Si NP

scalable
room temperature

I. Medalsy, M. Klein, A. Heyman, O. Shoseyov, F. Remacle, R. D. Levine, and D. Porath, Nature Nanotechnology 5: 451-457, 2010.

Ternary multiplier on a single dopant atom in a transistor

multi	-1	0	1
-1	1	0	-1
0	0	0	0
1	-1	0	1

dopant

$$
\frac{d I}{d V_{g}}
$$

 read out procedure
G. P. Lansbergen, M. Klein, S. Rogge, R. D. Levine and F. Remacle. Applied Physics Letters 2010, 96, 043107

Scheme for the balanced ternary addition

a n trit number, $t_{n} t_{n-1} \ldots t_{0}$ corresponds to the decimal number $d: d=\sum_{i=0}^{n} t_{i} 3^{i}$

$$
\begin{array}{cl}
\text { addition }: d=x+y+z & \left\{\begin{array}{l}
t_{\text {carry }}=[d / 3] \\
t_{\text {sum }}=d-t_{\text {carry }} 3
\end{array}\right. \\
z=-1 & z=0
\end{array} \quad z=1 \quad \begin{aligned}
& i=0 \\
& z=0
\end{aligned}
$$

sum	$\underline{\mathbf{1}}$	$\mathbf{0}$	$\mathbf{1}$		sum	$\underline{\mathbf{1}}$	$\mathbf{0}$	$\mathbf{1}$		sum	$\underline{\mathbf{1}}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\underline{1}$	0	1		$\mathbf{1}$	0	1	$\underline{1}$		$\mathbf{1}$	1	$\underline{1}$	$\underline{0}$
$\mathbf{0}$	1	$\underline{1}$	0		$\mathbf{0}$	$\underline{1}$	0	1		$\mathbf{0}$	0	1	$\underline{1}$
$\mathbf{1}$	0	1	$\underline{1}$	$\underline{\mathbf{1}}$	1	$\underline{1}$	0		$\underline{\mathbf{1}}$	$\underline{1}$	0	1	
$\mathbf{c a r r y}$	$\underline{\mathbf{1}}$	$\mathbf{0}$	$\mathbf{1}$	carry	$\underline{\mathbf{1}}$	$\mathbf{0}$	$\mathbf{1}$	carry	$\underline{\mathbf{1}}$	$\mathbf{0}$	$\mathbf{1}$		
1	0	0	0	1	0	0	1		1	0	1	1	
0	$\underline{1}$	0	0		0	0	0	0		0	0	0	1
1	1	$\underline{1}$	0	$\underline{1}$	$\underline{1}$	0	0		1	0	0	0	

Full ternary adder on a MOSSET device

Metal on insulator SET

three gates : top, side and back gate
for the top and the side gate : applying an alternating (AC) V_{B} leads to negative, nul or positive current.
J. A. Mol, J. v. d. Heijden, J. Verduijn, M. Klein, F. Remacle, and S. Rogge, Appl. Phys. Lett., 99, 263109, 2011.

Balanced ternary adder

x and y are mapped to the top and the side gates.
z is mapped in the value of the back gate

- cascadable
- scalable
- process three ternary numbers
- inherently ternary

Implementing a search algorithm

 addressing a SAT with a pulsed gate voltageAim : identifying one of the four functions of one bit

x	$\mathrm{F}_{1}(\mathrm{x})$	$\mathrm{F}_{2}(\mathrm{x})$	$\mathrm{F}_{3}(\mathrm{x})$	$\mathrm{F}_{4}(\mathrm{x})$
0	0	1	0	1
1	0	1	1	0

Using a quasiclassical algorithm, we can identifying which function of one bit has been computed (by the Oracle) by the oracle in one query.
B. Fresch, J. Verduijn, J. A. Mol, S. Rogge, and F. Remacle, 2012, submitted

Experimental set-up

Kinetic description of the relaxation between the two states

$$
\begin{aligned}
& \mathbf{P}=\left\{P_{G S}, P_{E S}, P_{0}\right\} \quad P_{0}=1-P_{G S}-P_{E S} \\
& \mathbf{K}(t)=\left(\begin{array}{ccc}
-\left(\Gamma_{G S, R}+\Gamma_{G S, L}\right) & W & \left(\Gamma_{R, G S}+\Gamma_{L, G S}\right) \\
0 & -\left(\Gamma_{E S, R}+\Gamma_{E S, L}+W\right) & \left(\Gamma_{R, E S}+\Gamma_{L, E S}\right) \\
\left(\Gamma_{G S, R}+\Gamma_{G S, L}\right) & \left(\Gamma_{E S, R}+\Gamma_{E S, L}\right) & -\left(\Gamma_{R, G S}+\Gamma_{L, G S}+\Gamma_{R, E S}+\Gamma_{L, E S}\right)
\end{array}\right)
\end{aligned}
$$

W : relaxation rate between the GS and the ES induced by coupling to the phonons

$$
d \mathbf{P}(t) / d t=\mathbf{K}(t) \mathbf{P}(t)
$$ one electron at the time on the SAT

Four double pulse profile are used to encode the four functions

F1

F4

F2

$V_{g}(t)$

output : stationary current

$$
\bar{I}(T)=|e|\langle n\rangle_{T} / T \quad T=t_{\text {prep }}+t_{1}+t_{2}+t_{\text {reset }}
$$

$\langle n\rangle_{T}$ is the average number of electrons tunneling through the SAT during T

$$
\begin{aligned}
& \langle n\rangle_{T}=\int_{0}^{T-t_{\text {reset }}} \Gamma(t) \cdot \mathbf{P}(t) d t+\langle n\rangle_{\text {reset }} \\
& =\int_{0}^{T-t_{\text {resest }}} d t\left(\Gamma_{G S, R}(t) P_{G S}(t)+\Gamma_{E S, R}(t) P_{E S}(t)\right)+\langle n\rangle_{\text {reset }}
\end{aligned}
$$

$$
\Gamma(t) \equiv\left(\Gamma_{G S, R}, \Gamma_{E S, R}, 0\right)
$$

Computing the four functions

$$
\begin{aligned}
& x=1 \Longleftrightarrow P_{G S}(0)=1 \quad \text { realized by applying } V_{g}=V_{H} \text { for } t_{\text {prep }} \\
& x=0 \Longleftrightarrow P_{0}(0)=1 \quad \text { realized by applying by applying } \mathrm{V}_{\mathrm{L}} \text { to empty the dot }
\end{aligned}
$$

A -	$x=0 \quad P_{0}(0)=1 \quad \bullet x=1 \quad P_{G S}(0)=1$				B					
$\langle n\rangle_{T}{ }^{0.8}$	$F(x)=1$			\bullet		$\mathrm{Vg}_{1} \mathrm{Vg}_{2}$	F(0)	$\langle n\rangle_{T}^{x=0}$	F(1)	$\langle n\rangle_{T}^{x=1}$
0.4					F1	VH VH	0	0.02	0	0.02
					F2	VH VL	1	0.67	1	0.67
0.2	$F(x)=0$		\bullet	-	F3	VL VH	0	0.21	1	0.43
					F4	VM VH	1	0.41	0	0.05
	F1	F2	F3	F4						

Purely classical identification scheme requires two queries
one query identification using a quasiclassical scheme
Prepare an initial probability vector that is a superposition of P_{GS} and P_{0}

$$
\begin{array}{r}
\text { canonical basis : } \quad \mathbf{e}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \mathbf{e}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\left(\begin{array}{c}
P_{G S} \\
P_{E S} \\
P_{0}
\end{array}\right) \\
\mathbf{P}(0)=c_{1} \mathbf{e}_{1}+c_{3} \mathbf{e}_{3} \equiv c_{1}[x=1]+c_{3}[x=0]
\end{array}
$$

The kinetic scheme is linear, the general solution is

$$
\mathbf{P}(t)=\Pi(t) \mathbf{c} \quad \Pi(t)=\left[\mathbf{e}_{1}(t), \mathbf{e}_{2}(t), \mathbf{e}_{3}(t)\right]
$$

The output is linear too $\langle n\rangle_{T}=c_{1}\langle n\rangle_{T}^{x=1}+c_{3}\langle n\rangle_{T}^{x=0}$
using a superposition, one can in one query

- solve the Deutsch problem : is the function balanced or constant ?
- identify the function : one out of 4 possibilities

Concluding remarks

- Multi-valued variables are inherent to the molecular and nanoscale.
- SAT's are CMOS compatible (no problem with undefined contact, interfacing with the macroscopic world).
- Atomic scale deterministic doping allows to reduce the variability problem.
- Quasiclassical parallelism can be implemented in the solid state using pulsed gate voltages.

