Dangling Bond Logic:

 Designing Boolean Logic Gates on a $\mathrm{Si}(100)$-H surface

Mark Saeys

IMRE
Chemical and Biomolecular Engineering National University of Singapore

Outline

- Dangling Bonds (DBs) on semiconductor surfaces
- H -junction along a $\mathrm{Si}(100)-(2 \times 1)-\mathrm{H}$ atomic wire
- Boolean DB logic gates on $\mathrm{Si}(100)-(2 \times 1)-\mathrm{H}$ surface

Manipulating single atoms using STM

Surface imaging tool based on quantum tunneling
Controllably manipulate atoms on a surface. Eigler, 1989

Selective removal of atoms with STM on MoS_{2}

"NANO SPACE" written on MoS_{2} by removing surface S atoms

Hosaka et al. J. Vac. Sci. Technol. 1995

Atomic line formed by removing surface S atoms with an STM tip The de-passivated sites create dangling bonds (DBs)

DBs on a $\mathrm{Si}(100)-(2 \times 1)-\mathrm{H}$ surface

Precise control
STM image of SiH surface with 4-DB cell with 2 perturbing DBs

Haider et al., PRL 2009

DBs closer to the diagonal perturb DBs

DB state within the $\mathrm{Si}(100)-(2 \times 1)-\mathrm{H}$ band gap

Calculated using VASP (DFT-PBE), 4×2 unit cell, 5 layers
Removing surface H atoms introduces states in the $\mathrm{Si}(100)$ surface band gap.
DB states are coupled to subsurface orbitals

Bias dependence of the STM image of the $\mathrm{Si}(100)-\mathrm{c}(4 \times 2)$ surface

Filled-state STM images
Experimental (7 K) Calculated (ESQC*)

Manzano et al., Phys. Rev. B 83, 201302 (2011)

- STM image and PDOS calculated using an Extended Hückel approximation fitted to DFT-PBE band structure
- STM image changes with bias because different states are probed: p_{z} states dominate at small bias, p_{x} states dominate at larger bias

DBs introduce π and π^{*} states in the gap, leading to π and π^{*} bands in a wire

DB wires on $\mathrm{Si}(100)-(2 \times 1)-\mathrm{H}$

Parallel
DB wire parallel to dimer row
Unbuckled DB wire
Buckled DB wire perp to dimer row

$\Delta \mathrm{E}=0.81 \mathrm{eV}$

DBs on other semiconductor surfaces: Ge(100)

DBs on other semiconductor surfaces: $\mathrm{MoS}_{\mathbf{2}}$

Extraction of S atoms

MoS_{2}
MoS_{2} surface band structure
without atomic wire

MoS_{2} surface band structure with atomic wire

Removing an S atom introduces 3 states in the band gap

- Dangling Bonds (DBs) on semiconductor surfaces
- H -junction along a $\mathrm{Si}(100)-(2 \times 1)-\mathrm{H}$ atomic wire
- Boolean DB logic gates on $\mathrm{Si}(100)-(2 \times 1)-\mathrm{H}$ surface

Quantum transport calculations

DB wires contacting a surface H -junction

Extended Hückel Hamiltonian to describe electronic structure Transmission coefficient, $T(E)$, from scattering calculations*

Transmission channels in wire direction within the energy gap DB wire band has a "2-channel" and "1-channel" region

Transport along a DB wire contacted by metallic electrodes

Resonance peaks resulting from the DB states appear within the energy range of the infinite wire band

Tunneling through H-junction connected by a DB wire and metallic electrodes

Resonance peaks split, and splitting depends on the coupling through the H junction

Outline

- Dangling Bonds (DBs) on semiconductor surfaces
- H-junction along a $\mathrm{Si}(100)-(2 \times 1)-\mathrm{H}$ atomic wire
- Boolean DB logic gates on $\mathrm{Si}(100)-(2 x 1)-\mathrm{H}$ surface

Atom switching devices

$\sum_{\text {AtMol }}^{8}$ Eas NUS

The switching atom is displaced from the atom wire by the electric field from the switching gate

Conceptually, logic circuits can be
 built using this concept

DB Switches on a $\mathbf{S i}(100)$ surface

Does this concept work?

DB Switch: T(E) and I-V curves

Tight-binding model for DB switch

Transport results from through-space and (more important) through-lattice coupling between DB pairs

Tight-binding model for DB switch

Qualitative agreement between TB model and full model.
TB model can be used to design large architectures.

Switch contacted by parallel DB wires

The switch can be contacted by parallel DB wires and keep its function. This provides flexibility to position the electrodes

Decreased coupling with electrodes reduces ON current, and consequently the ON/OFF ratio.

DB Logic AND gate on $\mathrm{Si}(100)-\mathrm{H}$

Switches connected in
(a)

(b)

series
a) Through Au nano-wire
b) Directly
c) Directly, and connected by parallel DB wires
(c)

(d)

IN	OUT	Atomic structure	Classical structure	
00	OFF	\ldots		
10	1	OFF	\ldots	
11	ON	$\ldots .$.		

= Add 2 H atoms

DB Logic AND gate without central wire: $T(E)$ and I-V curves

DB Logic NAND gate on $\mathbf{S i}(100)-\mathrm{H}$

(a)
(b)

Switches connected in parallel
a) By a "large" Au pad
b) By parallel DB wires

(c)

IN	OUT	Atomic structure	Classical structure
00	ON	\ldots	
01	ON		
10	0		
11	OFF	\ldots	

DB Logic NAND gate: T(E) and I-V curves

Conclusions

Dangling Bonds created on a $\mathrm{Si}(100)-\mathrm{H}$ surface introduce states in the surface band gap

Two types of atomic scale switches were constructed using these DB states, and connected by DB wires

Four Boolean Dangling Bond Logic gates (2 input/1 output) were designed on a $\mathrm{Si}(100)-\mathrm{H}$ surface, with ON/OFF ratio up to 100

Acknowledgements
A*STAR VIP at the Institute of Materials Research and Engineering AtMoI, Atomic Scale and Single Molecule Logic Gate Technologies National University of Singapore

