
www.cemes.fr/GNS

A controlled quantum SWAP logic gate in a 4-center metal complex

Jacques Bonvoisin

Mohamed Hliwa, Christian Joachim

CEMES - CNRS - UPR 8011
AtMol International Workshop on Architecture
\& design of Molecule Logic Gates and Atom Circuits

12\&13 January 2012 - Barcelona

Calculation on a single molecule ?
1° To force a molecule to look like a classical electronic circuit... but integrated inside a single molecule !

Calculation on a single molecule ? QHC

2° To use intramolecular dynamical quantum behavior leading to Hamiltonian Quantum Computer!

Rotation of functional group A NOR-AND quantum running gate molecule

Inputs $(e V)$		$\omega_{a b}(\mathrm{THz})$		
α	β	$N O R$	$A N D$	
0	0	0.3	$5 \cdot 10^{-5}$	
0	1	10^{-4}	$2 \cdot 10^{-4}$	
1	0	10^{-4}	$2 \cdot 10^{-4}$	
1	1	$5 \cdot 10^{-5}$	0.5	CPL 472 (2009) 74

Atoms manipulation on surface

Starphene on $\mathrm{Au}(111)$

PRB $\underline{83}$ (2011) 155443; ACS NANO $\underline{5}$ (2011) 1436
3° To divide the molecule into "qubits" ...

Qubit

$|0\rangle,|1>, a| 0\rangle+b \mid 1>$ with $a^{2}+b^{2}=1$

\longrightarrow Intramolecular "temporal" Circuit

Mathematic formulation for the SWAP operation

$$
\begin{aligned}
& U_{D S}\left(\begin{array}{c}
|00\rangle \\
|\mathbf{0 1}\rangle \\
|\mathbf{1 0}\rangle \\
|11\rangle
\end{array}\right)=\left(\begin{array}{c}
|00\rangle \\
|\mathbf{1 0}\rangle \\
|\mathbf{0}\rangle \\
|11\rangle
\end{array}\right) \quad U_{D S}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& A_{0} B_{0}|00\rangle+\mathbf{A}_{\mathbf{0}} \mathbf{B}_{\mathbf{1}}|\mathbf{0 1}\rangle+\mathbf{A}_{\mathbf{1}} \mathbf{B}_{\mathbf{0}}|\mathbf{1 0}\rangle+A_{1} B_{1}|11\rangle \\
& U_{D S} \\
& A_{0} B_{0}|00\rangle+\mathbf{A}_{\mathbf{0}} \mathbf{B}_{\mathbf{1}}|\mathbf{1 0}\rangle+\mathbf{A}_{\mathbf{1}} \mathbf{B}_{\mathbf{0}}|\mathbf{0 1}\rangle+A_{1} B_{1}|11\rangle
\end{aligned}
$$

Principle

Input 1

Electronic configurations involved in the controlled SWAP process

Schematic representation of the SWAP mecanism

Hamiltonian matrix in the basis of the possible configurations

HDVV spin Hamiltonian	[(3x3) bloc matrices : doublets formed by two electrons holding the same spin and the third one with opposite orientation]								
		$\|000\rangle$	$\|001\rangle$	010〉	$\|100\rangle$	$\|011\rangle$	$\|101\rangle$	$\|110\rangle$	\|111 ${ }^{\text {r }}$
$\hat{H}_{H D V V}=\sum_{i>j}-J\left(\overrightarrow{r_{i j}}\right) \overrightarrow{\vec{S}_{i}} \cdot \hat{\overrightarrow{S_{j}}}$	$\|000\rangle$	$\left(-\frac{\mathrm{J}-3 \Lambda_{z}}{2}\right.$	0	0	L_{0}	0	0	0	0
$\left\{J=J_{13}=J_{23}\right.$	\|001>	0	$+\frac{\mathrm{J}+\Lambda_{\mathrm{z}}}{2}$	$-\frac{\mathrm{J}}{2}$	$-\frac{\mathrm{J}}{2}$	0	0	0	0
$J_{12}=0$	$\|010\rangle$	0	$-\frac{\mathrm{J}}{2}$	$\frac{\Lambda_{\text {z }}}{2}$	0	0	0	0	0
$\hat{H}_{H D V V}=-J\left(\hat{S}_{1} \hat{S}_{3}+\hat{S}_{2} \hat{S}_{3}\right)$	$\|100\rangle$	0	$-\frac{\mathrm{J}}{2}$	0	A	0	0	0	0
	\|011>	0	0	0	0	$-\frac{\Lambda_{z}}{2}$	0	$-\frac{\mathrm{J}}{2}$	0
$\hat{H}_{B}=\mu_{B} \hat{\vec{B}}_{z} \cdot \hat{\vec{S}}=\mu_{B} \hat{B}_{z} \hat{S}_{z}$	\|101>	0	0	0	0	0	$-\frac{\Lambda_{*}}{2}$		0
$=\Lambda_{z} \hat{S}_{z}=\Lambda_{z}\left(\hat{S}_{1_{z}}+\hat{S}_{2_{z}}+\hat{S}_{3_{z}}\right)$	\|110>	0	0	0	0	$-\frac{\mathrm{J}}{2}$	$-\frac{\mathrm{J}}{2}$	$+\frac{\mathrm{J}-\Lambda_{\mathrm{z}}}{2}$	0
	\|111>	0	0	0	0	0	0	0	$-\frac{\mathrm{J}+3 \Lambda_{\mathrm{z}}}{2}$

Phenomenological reduction in the qubit basis set

Micro states $\quad\{|101\rangle,|011\rangle,|100\rangle,|010\rangle,|001\rangle,|110\rangle\}$

Model subspace

$$
\begin{gathered}
\{|010\rangle,|100\rangle,|011\rangle,|101\rangle\} \\
M_{1} \text { and } M_{2} \text { opposite spin signs, } M_{3} \alpha \text { or } \beta
\end{gathered}
$$

Intermediate subspace $\{|110\rangle,|001\rangle\}$ M_{1} and M_{2} same spin signs, M_{3} 人or $\underline{\beta}$

Because of degeneracy:
Swaping subspace

$$
\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}[|101\rangle \pm|100\rangle]=\left|\Phi_{M_{1} \bar{M}_{2}}^{g, u}\right\rangle \\
\frac{1}{\sqrt{2}}[|011\rangle \pm|010\rangle]=\left|\Phi_{\bar{M}_{1} M_{2}}^{g, u}\right\rangle
\end{array}\right.
$$

Control subspace

$$
\frac{1}{\sqrt{2}}[|110\rangle \pm|001\rangle]=\left|\Phi_{M_{1} M_{2}, \bar{M}_{1} \bar{M}_{2}}^{g, u}\right\rangle \rightarrow-\cdots \rightarrow
$$

Electron Indiscernability
\& W. Pauli exclusion principle
Antisymmetrisation of the wave function

Description in a base of Slater determinants

$$
|a \bar{b} c|=\mid a(1) b \overline{2}) \left.c(3)\left|=\frac{1}{\sqrt{3!}}\right| \begin{array}{lll}
a(1) & a(2) & a(3) \\
\bar{b}(1) & \bar{b}(2) & \bar{b}(3) \\
c(1) & c(2) & c(3)
\end{array} \right\rvert\,
$$

SWAP (3x3) Hamiltonian Matrix in the reduced basis set (in J unit)

$$
\begin{aligned}
& \left.\left|\Phi_{M_{1} \bar{M}_{2}}^{g}\right\rangle \quad\left|\Phi_{\bar{M}_{1} M_{2}}^{g}\right\rangle \quad \Phi_{M_{1} M_{2}, \bar{M}_{1} \bar{M}_{2}}^{g}\right\rangle \\
& \left.\begin{array}{c}
\mid \Phi_{M_{1}}^{g} \bar{M}_{2} \\
\left|\Phi_{\overline{M_{1}} M_{2}}^{g}\right\rangle \\
\left|\Phi_{M_{1} M_{2}, \bar{M}_{1} \bar{M}_{2}}^{g}\right\rangle
\end{array}\right\rangle\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{1}{6 \sqrt{2}} \\
0 & \frac{1}{2} & -\frac{1}{6 \sqrt{2}} \\
-\frac{1}{6 \sqrt{2}} & -\frac{1}{6 \sqrt{2}} & \frac{5}{16}
\end{array}\right)
\end{aligned}
$$

No static magnetic field contribution!
Role of magnetic field : to lift up the degeneracy between the α and β electron spins, \longrightarrow no direct influence on the process itself.

Temporal evolution and effective Hamiltonian

Time-dependent probability to find the system in a final state:

$$
\mathcal{P}_{f}(t)=\left|\left\langle\phi_{f} \mid \psi(t)\right\rangle\right|^{2}, \text { where }|\psi(t)\rangle=\sum_{n} C_{n}(t)\left|\psi_{n}\right\rangle
$$

Effective Hamiltonian:

$$
H^{e f f}=P U^{-1} H U P
$$

Effective magnetic coupling between two the 2 qubits through the central atom:

$$
H_{i f}^{e f f}=\frac{\left|E_{f}^{e f f}-E_{i}^{e f f}\right|}{2}
$$

Time dependant probability amplitude associated to the controlled SWAP process

Rabi oscillations curves obtained by using H (solid dark lines) or $H_{\text {eff }}$ (dashed blue lines)

Numerical estimations

$$
\begin{aligned}
& H_{i f}^{\text {eff }}=\frac{\left|E_{f}^{\text {eff }}-E_{i}^{\text {eff }}\right|}{2}=0.050 \text { (in J unit) } \\
& t=\frac{\pi \hbar}{2 H_{i f}^{e f f}}=31.562 \frac{\hbar}{J} \mathrm{sec}
\end{aligned}
$$

If $J=100 \mathrm{~cm}^{-1}, t=1.6 \mathrm{ps}$ and the oscillation frequency is 597 GHz
If $J=1 \mathrm{~cm}^{-1}, t=160 \mathrm{ps}$ and the oscillation frequency is 5.97 GHz

Possible chemical structure for the SWAP molecule...
M S

Inorg. Chem. Commun. 2008, 11, 975

Scheme 2. Synthesis of complexes 2-5 and 6.

Eur. J. Inorg. Chem. 2011, 2698

STM

Ru(dbm) ${ }_{3} @ A g(111)$ at He liq

Eur. J. Inorg. Chem. 2011, 2698

$\mathrm{Ru}(\mathrm{dbm})_{2}($ Acac-TIPSA $)$

Next necessary step...

Summary and perspectives

\checkmark Design of a SWAP molecule logic gate:

- Proposition of a molecule \& a model to implement a quantum controlled swap molecule logic gate:
- Three paramagnetic adjacents centers (two qubits and one control sites)
- Activation by appropriate light radiation (IVCT)
- Initiation of the active qubits by applying a static magnetic field and/or appropriate light radiation
- Field independent swapping time

Manipulation of information inside a single molecule
\rightarrow Towards molecular quantum computer!
\checkmark Atom based technology (STM, SP-STM, AFM, MRFM...) required !

Aknowledgements

- Molécule a calcul
- Concept \& Theorie: Mohamed Hliwa \& Christian Joachim
- Synthesis : Cédric Michel (M2R); Sabrina Munery (IE CDD) \& Christine Viala (AI)
- XR: Nicolas Ratel-Ramond (IR)
- STM : Loranne Vernisse (PhD); Olivier Guillermet \& Roland Coratger
- Modelisation \& STM image calculation (ESQC, ASED+): Youness Benjalal (Postdoc) \& Xavier Bouju

And thank you...

