Ab Initio Modeling Of Quantum Transport At The Nanoscale

Vincent Meunier Rensselaer Polytechnic Institute Troy, NY, USA Quantum Mechanical Modeling Of Electronic Transport At Molecule/ Nanoscale Interface

> Vincent Meunier Rensselaer Polytechnic Institute Troy, NY, USA

OUTLINE

with a water both as the second and the second and the second second second second

- Introduction to modeling QT
 - Theory & Algorithms (knitting, patchworks,...)

Sector States and an and the

- Focus on quantum mechanical effects
 - Negative Differential Resistance
 - Molecular Gating: Memory Effect
 - Chemical Sensing: DNA, small gas molecules, etc
 - Multiterminal: Interference and Scattering
 - More Networks

Some new results on GNR (graphitic nanoribbons)

The Dawn of Molecular Electronics

Electrical contacts to one- and two-dimensional nanomaterials

François Léonard¹ and A. Alec Talin²

Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts

Julio A. Rodríguez-Manzo^a, Florian Banhart^{a,1}, Mauricio Terrones^b, Humberto Terrones^b, Nicole Grobert^c, Pulickel M. Ajayan^d, Bobby G. Sumpter^e, Vincent Meunier^e, Mingsheng Wang^f, Yoshio Bando^f, and Dmitri Golberg^f

(e)

Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts

Julio A. Rodríguez-Manzo^a, Florian Banhart^{a,1}, Mauricio Terrones^b, Humberto Terrones^b, Nicole Grobert^c, Pulickel M. Ajayan^d, Bobby G. Sumpter^e, Vincent Meunier^e, Mingsheng Wang^f, Yoshio Bando^f, and Dmitri Golberg^f

Monday, January 16, 12

QUANTUM MECHANICAL APPROACH USED IN THIS WORK

$$\hat{H}_{ele}\Psi_n(r;R) = \epsilon_n(R)\Psi_n(r;R)$$

$$\hat{H}_{ele} = -\sum_{i}^{electrons} \frac{\nabla_{i}^{2}}{2} - \sum_{i}^{nuclei \ electrons} \frac{Z_{i}}{r_{i..}} + \sum_{i}^{electrons} \sum_{i} \frac{1}{r_{i..}}$$

$$\int \left[-\frac{\hbar^{2}}{2m} \nabla^{2} + V_{s}(\vec{r}) \right] \phi_{i}(\vec{r}) = \epsilon_{i} \phi_{i}(\vec{r})$$

$$V_{s}(\vec{r}) = V(\vec{r}) + \int \frac{e^{2}n_{s}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^{3}r' + V_{XC}[n_{s}(\vec{r})]$$

$$E_{XC}^{GGA}[n_{\uparrow}, n_{\downarrow}] = \int \epsilon_{XC}(n_{\uparrow}, n_{\downarrow}, \vec{\nabla}n_{\uparrow}, \vec{\nabla}n_{\downarrow})n(\vec{r}) d^{3}r.$$

QUANTUMTRANSPORT

QUANTUM TRANSPORT

ORIGIN OF FINITE RESISTANCE

No coupling: wave function is given by $\Psi \propto e^{-i\alpha t/\hbar}$ (sharp peak in the energy domain, i.e. probability of finding an electron at a given place is constant.)

With coupling, i.e. finite probability for the electron to escape the channel (i.e. finite lifetime for the electron in the channel)

In energy space, this corresponds to a Lorentzian broadening.

Effect of broadening

Fraction of those electrons that contribute to the current is equal to the width of the active region divided by the total broadening (2y1):

 $I = \frac{q}{\hbar} \frac{\gamma_1}{2} \times \frac{qV_D}{2\gamma_1} = \frac{q}{4\hbar} V_D$

LANDAUER-BUTTIKER

$$G_C = (\epsilon I_C - H_C - \Sigma_1 - \Sigma_2 - \dots - \Sigma_N)^{-1}$$

$$\Sigma_i = h_{Ci}g_ih_{iC}$$
 $g_i = (\epsilon I_i - H_i)^{-1}$

$$G^{n \to m}(E) = \frac{2e^2}{h} \mathcal{T}_{nm}(E)$$
$$\mathcal{T}_{nm} = Tr(\Gamma_i G_C^r \Gamma_j G_C^a)$$

KNITTING ALGORITHM

Waintal et al, PRB 77, 115119 (2008)

NON-EQUILIBRIUM TRANSPORT

Main reference: Phys. Rev. Lett 95 206805 (2005) Our Generalization to multiterminal: Phys. Rev. B, 81, 125420 (2010); .J. Chem. Phys, 131, 164105 (2009)

Monday, January 16, 12

NONEQUILIBRIUM QT OF ORGANIC MOLECULES ON SILICON

Transmission arises from HOMO and LUMO tail NDR appears around 1.6 eV Importance of SCF under large bias

Phys. Rev. Lett 95 206805 (2005)

QUASI MOLECULAR ORBITAL PICTURE OF ELECTRONIC TRANSMISSION

- Molecular orbitals **broaden** with applied bias
- When molecular orbitals match the band edge, a peak appears in the I-V curve
- When molecular orbitals fall into the band gap of Si, the current drops, i.e., negative differential resistance (NDR) occurs.

Phys. Rev. Lett 95 206805 (2005)

BRIDGED C60

Two C_{60} s connected by an alkane chain are sandwiched between two Aluminum electrodes.

The I-V curve: NDR at very low bias (V = +0.15V and -0.15V)

Resonant tunneling at a low bias through the LUMO

ACS Nano 4 (12), 2010

BIAS DEPENDENT COUPLING: QMO PICTURE

The LUMOs of the C₆₀s.

Due to charge transfer from the electrode to C_{60} , the LUMOs are partially filled.

At zero bias, the LUMO of the C_{60} s align with each other very well. This gives rise to the main peak in the transmission.

The LUMOs are shifted away from each other under finite bias. The coupling between them becomes weaker and the transmission decreases.

FURTHER TUNING:A C3H8 MOLECULE IS ATTACHED TO THE RIGHT C60

CHEMICAL HETERODOPING: PHOSPHORUS NITROGEN

ACS Nano 2, 441-448 (2008) ACS Nano 3, 1913-1921 (2009)

Monday, January 16, 12

PAND P-N DOPING FOR ULTRASENTIVE DETECTION

• Substitutional P atoms have affinity towards acceptor molecules

d ol

- P-N co-dopants have a reduced affinity for acceptor molecules
- P–N bond can also take up charge, resulting in affinity towards donor molecules

View Online

NO ₂	57%		P doped CNT			PN doped CNT		
O_2 SO ₂	57% 41%	Molecule	$d_{\rm Eq}$	E _{Bind}	$\Delta q_{ m mol}$	$d_{\rm Eq}$	E _{Bind}	$\Delta q_{ m mol}$
PN-doped		CO	3.01	0.088	0.02	2.38	0.203	-0.04
CO	0%	 NH ₃	3.53	0.064	0.00	2.41	0.444	-0.16
NH ₃	-10%	NO ₂	1.93	1.545	0.07	2.65	0.232	0.15
NO ₂	-1%	O_2	1.7	0.756	0.27	3.07	0.061	0.03
SO ₂	4%	30	2.62	0.435	0.27	2.73	0.335	0.25

MOLECULAR GATING

ENDOHEDRAL MOLECULES

Takenobu et al. Nat. Mat (2003)

ENCAPSULATION AND FUNCTIONALITY

DETAILS OF THE LOCAL INTERACTIONS PROVIDE AN UNDESTANDING OF THE ORIGIN FOR THE ON/OFF STATES

Observation of molecular orbital gating

Hyunwook Song^{1,2}, Youngsang Kim³[†], Yun Hee Jang², Heejun Jeong³, Mark A. Reed⁴ & Takhee Lee^{1,2}

MOLECULE-ENHANCED COUPLING

NITROGEN DOPING: BAMBOOS AND CLOSING

ACS Nano I, 369 (2007)

N-DOPING INCREASE COUPLONG FOR DNA SEQUENCING

Meunier and Kirstic, JCP08, US Patent

WHAT HAVE WE LEARNED SO FAR?

and the second state of the second second state of the second second second second second second second second

- We looked into molecule/nanoscale electrode interface
- We found out that the details of M.O. distribution at the interface brings about non-classical effects (e.g. NDR)
- We also shown some strong effects on local electornic properties and modifications of the transmission probability along certain conduction channels.
- The coupling can be enhanced by the presence of molecules at the interface

INTERFERENCE EFFECTS

NANO LETTERS

Controlling Quantum Transport through a Single Molecule

2006 Vol. 6, No. 11 2422-2<u>426</u>

David M. Cardamone,* Charles A. Stafford, and Sumit Mazumdar

See also: Works presented by this morning's speakers

NANO LETTERS 2008 Vol. 8, No. 10 3257-3261

Quantum-Interference-Controlled Molecular Electronics

San-Huang Ke* and Weitao Yang

PERFECT INTERFERENCE TESTBED: RINGS

HOW TO PROBE LOCAL PHASE

Monday, January 16, 12
IT IS (ALMOST) ALL ABOUT INTERFERENCE

Monday, January 16, 12

0.5

0.5

PROBING PHASES LOCALLY, ALLAT ONCE

Monday, January 16, 12

ACTUAL MOLECULAR INTERFOREMETER

CAN WE TUNE THE CURRENT ON IN DESTRUCTIVE SETUP BY SOMEHOW CONTROLLING THE QUANTUM-INTERFERENCE-EFFECT?

Yes, this is possible if we can change the electron path, thereby modifying the phases of their paths, by connecting a third electrode to the system and applying bias-voltage through it as well.

Phys. Rev. Lett. 105, 236803 (2010)

HARTREE POTENTIAL AND CHARGE DENSITY IN EQUILIRBIUM

Phys. Rev. B, 81, 125420 (2010); .J. Chem. Phys, 131, 164105 (2009)

Monday, January 16, 12

QUANTUM-INTERFERENCE-CONTROLLED MOLECULAR TRANSISTORS

Phys. Rev. Lett., 105, 256803 (2010)

RIBBON AND ORGANIC RING STATES CAN BE EFFECTIVELY COUPLED TO YIELD TRANSISTOR OPERATIONS

THE "OFF" TO "ON" CURRENT I MODULATED THROUGH DEPHASING ELECTRON PATHS WITH THE INFLUENCE OF THIRD ELECTRODE

HOW CAN WE BUILD IN MORE INTERFERENCE?

<u>Complex NanoAssemblies</u>; J. Romo-Herrera, V. Meunier & al., Nano Lett. 7, 570 (2007)

SUPERNETWORKS: POINT AND GROUP SYMMETRIES

Nano Lett. 7, 570 (2007) Nanotechnology, 19, 315704 (2008)

WHAT'S A GOOD CONDUCTOR ANYWAY?

Nano Lett. 7, 570 (2007) Nanotechnology, 19, 315704 (2008)

Monday, January 16, 12

STRUCTURAL DEFECTS TO DIRECT ELECTRONS IN A DETERMINISTIC MANNER

ACS Nano 2, 2585 (2008)

ACS Nano 2, 2585 (2008)

SULFUR DOPING

Angewandte Chemie-International Edition 47, 2948 (2008) Advanced Functional Materials 19, 1193 (2009)

INTERFERENCE IN ASSEMBLED GNRS

QUANTUM TRANSPORT IN GRAPHENE NANONETWORKS

The second of th

Nano Lett., 11, 3058 (2011)

GNR ELECTRONIC PROPERTIES

OUT-OF-PLANE JUNCTIONS

A CALLER AND AND AND AND A CONTRACT OF A CON

Nano Lett. 11, 3058 (2011)

IN PLANE JUNCTIONS: ZIGZAG EDGES: SYMMETRY BREAKING DUE TO SPIN

IT IS QUITE EASY TO PROPOSE SUCH HIGHLY ORDERED STRUCTURES... WHAT ABOUT REALITY?

CVD-GROWN GNRS: ROUGH EDGES

M. Pan, Meunier, Dresselhaus, under review (2011)

ANNEALING DEFECTS?

JOULE HEATING

Science 323, 1701 (2009)

SHARP ZIGZAG AND ARMCHAIR EDGES

Science 323, 1701 (2009)

See also:

M. Engelund, J. A. Furst, A. P. Jauho, and M. Brandbyge, Phys. Rev. Lett. 104, 036807 (2010). Meunier et al, Phys. Rev. Lett. 105, 045501 (2010)

Monday, January 16, 12

BOTTOM-UP APPROACH

nature

Vol 466 22 July 2010 doi:10.1038/nature09211

LETTERS

Atomically precise bottom-up fabrication of graphene nanoribbons

Jinming Cai¹*, Pascal Ruffieux¹*, Rached Jaafar¹, Marco Bieri¹, Thomas Braun¹, Stephan Blankenburg¹, Matthias Muoth², Ari P. Seitsonen^{3,4}, Moussa Saleh⁵, Xinliang Feng⁵, Klaus Müllen⁵ & Roman Fasel^{1,6}

Cai et al, Nature 2010

ZIGZAGING GRAPHENE NANORIBBONS

GRAPHITIC NANO-WIGGLES: GNWS

Phys. Rev. Lett. **107**, 135501 (2011).

GNWS: STRUCTURAL PROPERTIES

GNR ELECTRONIC PROPERTIES

Monday, January 16, 12

ARMCHAIR-ARMCHAIR

Monday, January 16, 12

ARMCHAIR-ZIGZAG

ARMCHAIR-ZIGZAG

ZIGZAG-ZIGZAG

Monday, January 16, 12
TUNING RESONANCES

Monday, January 16, 12

FOOD FOR THOUGHT

- I've presented a broad array of examples where electronic transport is driven by quantum mechanics, far from classical regime
- Connections to experiment abound, yet full connection with actual experiment is still largely eluding state-of-the art
- What about missing QM ingredients (beyond mean field!)?

SPECIAL THANKS

RPI: <u>E. Costa-Girao</u>, <u>E. Cruz Silva</u>, L. Liang

NCSU: J. Bernholc, W. Lu

UDel: B.K. Nikolic and <u>Kamal Saha</u>

ORNL: Bobby G. Sumpter, Jose Romo Herrera

PSU: M.Terrones

MIT: X. Jia, M. Dresselhaus

UCL: JC Charlier, Andres Bottello

Thank You