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Nanoscience and Nanotechnology funding worldwide

Nanotechnology is now taking its first steps outside the laboratory, and it is demonstrating an immense

potential for the manufacture of consumer goods, thus offering tangible and important perspectives for

the economy [1] in the next few decades. Because of this expected economic impact, nanotechnology has

aroused great interest among funding agencies, scientific policymakers, organizations, institutions and

companies of the world’s most developed countries.



2 Introduction

Nanotechnology represents one of the fastest growing areas of R&D. In the period 1997–2005 world-

wide investment in Nanotechnology research and development has exhibited an approximately ninefold

increase, from $432 million to $4.2 billion [2]. This represents an average annual growth rate of 32%. The

first set of coordinated efforts oriented to promote Nanotechnology at the national scale took place in the

US in 1996, when several federal agencies launched the National Nanotechnology Initiative (NNI) [3] that

has invested more than $2700 million in the 1997–2003 period to support long-term nanoscale R&D. In

2003 the US Government allocated $43.7 billion over a four year period to Nanotechnology R&D. Current

estimates indicate that the global US Government spending for 2006 has been $6 billion. In addition

to the federal initiatives, an important effort has been carried out at the level of the various US state

governments, as well as within some major companies (Motorola, Intel, Hewlett-Packard, IBM, etc).

Industrialized Asian countries have promoted the development of Nanotechnology in the industrial

and governmental sectors, with investment levels similar to those of the USA. Countries such as Taiwan

and Korea have made a great effort to keep their current privileged positions in the control of Nanotech-

nology know-how. As an example, during the period 1997–2003 Japan has invested $2850 million on

Nanotechnology promotion, an investment even higher than that of the USA. Korea launched the 10

Year Plan for the promotion of Nanotechnology in 2001 with about $1485 million committed — from the

government ($983.5 million) and industry ($501.5 million) — aiming to enter the group of the top 5 nan-

otechnology countries in the world. Its ambitious program focuses on building infrastructure/facilities,

strategic R&D and education. Taiwan launched its Nanotechnology program in 2002 and the funding

is about $630 million over 6 years. China has also recently joined this race, making millionaire invest-

ments for the creation of several university-industry poles dedicated to Nanotechnology, emphasizing its

leadership in nanomaterials.

Europe has intensively promoted Nanotechnology [4] within the VI [5, 6] and VII [7, 8, 9] Research

Framework Programs (denoted as FP6 and FP7, respectively), through the thematic Area denominated

“Nanotechnologies and nano-sciences, knowledge-based multifunctional materials and new production

processes and devices“ (NMP) that operated with a budget of 1300 million euros for the period 2003–

2006 [5] and with the creation of the NID proactive initiative within the ICT (Information Communication

Technologies) program [6]. In addition, other FP7 themes such as Health, Transport or Energy also

launched funding calls directly related with Nanoscience & Nanotechnology [7]. There has been a boom

of European initiatives dedicated to develop and popularize Nanotechnology, to the point of having

today almost 200 national or regional networks. In the FP7, Nanotechnology maintains its outstanding

role, as proved by the creation of the NanoICT proactive initiative (ICT) [6] or of the Technological

Platforms, characterized by a strong industrial component, to drive the technological development in

areas such as Nanoelectronics (ENIAC/EANEAS) [9]. The following table illustrates the estimated

economic investment that nanotechnology has attracted around the world during the last decade.
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Table 1: Estimated worldwide Nanotechnology funding (M$/year) in the 1997–2007 period.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Europe 126 151 179 200 225 400 650 9504 10504

Japan 120 135 157 245 465 750 8103 8754 9504

USA2 116 190 255 270 422 604 862 9894 12004 13515 13925

Others6 70 83 96 110 380 520 5113 9004 10004

TOTAL 432 559 687 825 1502 2274 2833 3714 4200

1 Source: Ref. [10].

2 Do not include regional initiatives.

3 Source: EU [4].

4 Source: National Science Foundation (USA).

5 Source: Ref. [11].
6 Others: Australia, Korea, Canada, Taiwan, China, Russia, Singapore, Eastern Europe.

Nanomodelling Initiatives

Simulation of nanostructures and modelling of physical phenomena occurring at the nanoscale is crucial

for the development of Nanotechnology. Emerging research areas such as Molecular Electronics, Biotech-

nology, Nanophotonics, Nanofluidics, Spintronics, and Quantum Computing could lead, in the mid-term

future, to essential breakthroughs in information processing, in medicine, in biology and in manufac-

turing techniques. Modelling the characteristics of the nanodevices that would be at the heart of such

innovations is therefore becoming more and more important and should make possible to: (i) provide a

visual description of what happens inside a device, (ii) optimise the devices under study, (iii) improve

the understanding of nanoscale properties (physical, chemical, biological). Awareness of the relevance of

nano modelling has prompted the scientific community and funding agencies to promote several initiatives

worldwide aimed at strengthening research in this area [12, 13].

In France, CEA has recently launched a new platform focused on “simulation tool developments

for Nanosciences and Nanotechnologies”. This programme currently gathers more than 40 permanent

research staff with expertise in computer simulation for nanoelectronics, spintronics, molecular and or-

ganic electronics, or new energy sources. The platform is made up of three different centers of expertise,

namely “AB INITIO HANDBOOK for Nanosciences”, “NANOSCOPE” and “NANOSPECTROME-

TER” that respectively target various aspects of simulation including the development of state of the

art ab initio calculations, molecular dynamics, and the study of physical properties (optics, transport,

etc.). The first center focuses on setting up a database of material science information derived from first

principles calculations (activation energies of dopants in semiconducting materials, thermodynamics of

nanoscale structures, catalytic ability of small sized clusters). The “NANOSCOPE” center investigates
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the dynamical phenomena at the nanoscale (dopant diffusion, interface and defect formation), whereas

the “NANOSPECTROMETER” center tackles the development of efficient tools to simulate physical

properties of novel materials (nanotubes, nanowires, graphene, organics, molecular systems) and related

devices (field effect transistors, interconnects).

Other actions, such as the WEB-based initiative “Modelling for Nanotechnology” (M4nano) [12], led

by four Spanish Institutions: Phantoms Foundation, Parque Cient́ıfico de Madrid (PCM), Universidad

Autónoma de Madrid (UAM) and Universidad Complutense, aims to maintain a continuous and struc-

tured flow of information among research groups, thereby preventing fragmentation of research efforts in

Nanomodelling.

In the US, the nanoHUB [13] provides online simulation tools and was created by the NSF-funded

Network for Computational Nanotechnology (NCN). This network has received in 2007 a five-year, $18.25

million grant from the National Science Foundation (NSF) to support the US National Nanotechnology

Initiative with expanded capabilities and services for computer simulations.

Nanomodelling research overview

During the second half of the last century, the usage of computers for investigations of basic and technolog-

ical issues in the physical sciences and engineering (as well as in various other fields, including economy,

finance, weather forecasting, and the health sciences) evolved and transformed from being aimed pri-

marily at enabling and accelerating certain time-consuming numerical manipulations to their present

status, in which computer-based simulations serve as an indispensable and powerful tool of discovery,

supplementing and complementing (more traditional) laboratory experiments and analytical theory as

the pillars of scientific exploration [14]. New tools, algorithms and computational capabilities resulting

from the increasing performance of supercomputers are envisioned to radically change the development

of innovation in Information and Communication Technologies.

In the near future, the controlled and structured development of advanced numerical simulation

tools and platforms could become a cornerstone of European excellence and leadership in emerging ICT

innovation.

In addition, the engineering and integration of new low-dimensional materials (carbon nanotubes [15],

semiconducting nanowires [16], quasi-1D organic compounds, two-dimensional graphene [17], molecular

crystals [18], or biomolecules (DNA) and other molecular systems [19]), along with the mastering of quan-

tum phenomena emerging at the nanoscale, increasingly demand for more realistic simulation of atomic-

scale features of device components (material interfaces, chemical heterogeneity, conductance properties)

as well as for a more sophisticated treatment of quantum physics (interactions, many-body effects, out-

of-equilibrium phenomena), which will ultimately dominate any underlying device characteristics, the

design of novel functionalities, and circuitry performance.

In particular, despite their successful contribution to ultimate MOSFET simulation, Monte Carlo

approaches remain tremendously difficult to bridge to state of the art Density-Functional Theory (DFT)

—based methods, whose ultimate developments allow higher accuracy in the description of atomistic scale
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features and complex phenomena [20] and, in general, in full quantum approaches. Bringing ab initio

capability to the device simulation framework will be essential in the quest for understanding the role of

quantum phenomena and further achieving optimal control of such phenomena emerging at the nanoscale.

For instance, the severe device characteristic fluctuations due to uncontrolled/unwanted distribution of

dopants in the Si-channel and the effect of interfaces (dielectric layer) on charge carrier mobilities jeopar-

dize the establishment of predicting computational tools (and compact SPICE-like models) essential for

engineers for the proper design of circuit architectures for future nodes of advanced microelectronics [21].

Many novel materials such as carbon nanotubes, semiconducting nanowires, biomolecules (DNA), and

two-dimensional graphene are full of promises, and seem to open unprecedented opportunities for appli-

cations and innovation in ICT (as envisioned in the BEYOND CMOS ITRS roadmap), but sophisticated

computational frameworks are scarce and not versatile enough. Often, the fundamental and spectacular

properties revealed by state of the art ab initio methods are not transferable into realistic device simula-

tion, and the lack of well calibrated simplified models prohibits the study of essential statistical features

such as device variability.

Innovation in ICT will also crucially need a deeper understanding of quantum phenomena involving

spin (spintronics), phonons (thermal management, dissipation) and electromechanical degrees of freedom.

Recent achievements in spintronics with carbon nanotubes [22] demonstrate the usefulness of sophisti-

cated DFT-based computational approaches to achieve some predictability of novel material and device

performances. More can be done if state of the art ab initio approaches are combined with advanced

quantum transport methods and device simulation multiscale strategies.

The aim of the present report is to provide the reader with an overview of topics and techniques that

are currently relevant in the field of nanodevices and nanocircuit modelling, with a specific emphasis

on an aspect which is rapidly gaining importance, i.e. multi-scale modelling. It is our intention to

highlight the most important open problems, the promising new routes for computational developments

and underlying modelling needs of the nanoelectronics community.

Although new device concepts suitable to replace, as the mainstream technology, the CMOS workhorse,

once its scaling limits will be reached, are yet to come, significant results have been achieved in terms of

understanding of transport, noise, electronic structure and general physical properties of building blocks

for innovative circuits. As a result of the development of optimized techniques and of the steep increase

of the available computational power, atomistic simulations of relatively extended objects have become

possible, and have extended the reach of first-principle simulation to functional structures. However, it is

not conceivable to model complete circuits or even complete devices with a fully atomistic approach, due

to the huge computational size of the resulting problem. It is therefore necessary to pursue an approach

with multiple levels of approximation, adapted to the treatment of the different building blocks: from the

most advanced and detailed atomistic treatment applied to a contact or small active region to semiclas-

sical approximations for the description of parts of circuits made up of several interacting devices. This

corresponds to a multi-scale modelling approach that defines a hierarchy of simulation tools analogous,

from some points of view, to what is established in traditional microelectronics, with less refined models

that are applied to higher-level structures exploiting parameters and functional relationships that are
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derived with more refined approaches applied to simpler blocks.

The big challenge for this multi-scale hierarchy for nanoelectronics, compared to the existing tools

for microelectronics, is represented by the much wider scope involved and by its intrinsically interdis-

ciplinary nature, which includes not only many different branches of physics and engineering, but also

chemistry and biology. Quite different approaches must be bridged in order to build a seamless hierarchy

of simulation tools that can be applied effectively also by nonspecialists and that can actually support

product development as nanoelectronic technologies are progressively transferred to industry.

Nanomodelling report overview

The present report intends to provide an overview, albeit limited and certainly not exhaustive, of relevant

aspects of modelling at the nanoscale, pointing out some important issues that are still open and affording

the reader that is not yet active in the field with an introduction to several widely used techniques and

with a large body of references.

This review has been written by experts in the fields of computational modelling, most of them

have strongly contributed to the development of European excellence in recent years, and have been

leading EU-initiative over FP5, FP6 and FP7. Although more efforts will be needed to bridge different

communities from ab initio development to device simulation, contributors of this report are overviewing

promising methodologies to fill the gap between scientific communities, establishing some framework for

further promoting European-based networking activities and coordination.

In Chapter 1 an approach for molecular-scale simulations based on first principles is presented, with

a focus on the combination of the Density Functional Technique (DFT) with the Nonequilibrium Green’s

Function (NEGF) formalism. Such an approach has allowed a very successful treatment of conduction

through single molecules, and the obtained results generally agree well at a qualitative level with experi-

mental data.

Chapter 2 presents novel order N real space methods to investigate quantum charge transport within

the frameworks of both Kubo-Greenwood and Landauer-Büttiker approaches. These order N method-

ologies allow for realistic modelling of carbon nanotubes, semiconducting nanowires and graphene-based

material and devices. These computational schemes combine state of the art ab initio calculations with

sophisticated semi-empirical models, and give quantitative access to the fundamental transport length

scales (mean free path, charge mobilities, localization lengths) in realistic models of chemically modified

(doped, functionalized) low-dimensional systems.

Chapter 3 deals with the integration of the Non Equilibrium Green’s Function formalism with DFT

(Density Functional Theory) for the investigation of charge and spin transport in carbon based nanode-

vices.

A relevant aspect of atomistic simulation is treated in Chapter 4, where analytical approximations to

inter-atomic potentials are discussed, which are a simplification needed to handle structures containing a

large number of atoms with semiclassical techniques. These new atomistic potential are of relevance for

further exploration of fundamental and intrinsic properties of microelectronics materials.
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Chapter 5 focuses on an introduction to the k · p method and its applications to the investigation of

heterostructures. This technique represents an intermediate stage between effective mass approaches and

fully atomistic descriptions, and is particularly useful for the treatment of nanostructures with a relatively

large number of atoms, such as carbon nanotubes or the active area of semiconductor nanodevices.

An in-depth discussion of the application of Green’s function techniques to interacting systems is

presented in Chapter 6, with specific emphasis on systems operating in the Coulomb Blockade regime.

This chapter presents state of the art advances in extending the conventional computational methods to

include non equilibrium phenomena, and tackle with electron-phonon coupling in molecular systems or

DNA.

Chapter 7 introduces the Büttiker formalism for the investigation of shot noise in nanostructures and

details its application to a few examples, such as diffusive wires or chaotic cavities, starting from an

effective mass approximation.

The development of efficient analytical approximations is instead the subject of Chapter 8, where

analytical models suitable for fast numerical processing within computer algorithms are presented for the

specific case of gated circular quantum dots.

Chapter 9 offers an outline of Quantum Monte Carlo Methods, which are essential for the determi-

nation of parameters typical of strongly interacting systems that can be transferred to levels of higher

approximation, such as DFT.

Chapter 10 summarizes molecular dynamics techniques and their relevance in the framework of multi-

scale modelling.

Finally Chapter 11 overviews the potential of a generalized image charge method for computing

electric field effects in scanning probe microscopies. The versatility of the method allows for an analysis

of the electrostatic problem as a function of the tip apex geometry, and can be easily extended to analyze

multilayered and anisotropic samples.
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Chapter 1

First-principles approach for the

calculation of electronic transport at

the molecular scale

M. Brandbyge, T. Frederiksen, M. Paulsson

Department of Micro and Nanotechnology, NanoDTU,

Technical University of Denmark,

Ørsteds Plads, Bldg. 345E, DK-2800 Lyngby, Denmark

Abstract. A brief introduction to atomistic modeling of electronic transport properties of nano-devices

is given. We highlight a popular approach which combine density functional theory and non-equilibrium

Green’s functions, and show applications of it to elastic transport, as well as inelastic transport due

to phonon scattering. An approximate scheme which enables calculations of the inelastic transport for

relatively large systems is described.

1.1 Introduction

Reliable modeling of electron transport at the nanoscale is a field of increasing importance, both due

to the downscaling of the well-known semiconductor electronic technology, but also due to the great

progress and interest in molecular based electronics. The density functional theory (DFT) approach

offers an atomistic description of total energy properties of nanosystems without system specific adjustable

parameters. Further, in combination with the non-equilibrium Green’s function (NEGF) method it has

recently become a popular approach to atomistic-based quantum transport in nanosystems [1, 2, 3, 4]. In

fact, recently a Danish based software company has put a commercial implementation of this approach
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on the market (www.atomistix.com).

The aim of this contribution is to give a brief introduction to the combined DFT-NEGF transport

method applied to nanostructures based on an atomistic description. DFT offers a overall good description

of chemical bonding and atomic structure, while at the same time it is possible to do calculations on

systems involving hundreds to thousands of atoms. Typical transport systems are, due to the involvement

of two or more electrodes connecting the actual device, often at least in this range of size. There is always

a trade off when it comes to accuracy in the method describing the electronic structure and the size of

the system. It is widely believed that DFT is a good starting point when it comes to balancing accuracy

of method and system size for describing the atomic structure. On the other hand when it comes to

transport properties it is clear that DFT is by construction targeting the total energy of the system and not

transport. During the last couple of decades DFT has been used with increasing popularity to calculate

transport and to establish for what systems and what transport properties DFT may yield reasonable

results. It is furthermore possible to use DFT as a starting point for more involved electronic structure

methods such as, time-dependent DFT [5], the GW approximation [6], or self-interaction corrected DFT

[7]. In weakly coupled molecular conductors electron-electron interaction effects play a significant role.

While some Coulomb blockade effects have been described using spin-density functional theory [8], the

correlation effects are more complicated to treat. In this direction the addition of a Hubbard-like term

on top of the DFT Hamiltonian have been used [9]. These more advanced developments may, on the

other hand, lead to compromises in the system-size which can be undertaken. It is therefore interesting

to investigate to what extent we may obtain good agreement and predictive power with the DFT-NEGF

approach by comparison with available experimental data for various transport properties in and system

types.

In the following we will briefly present the DFT-NEGF transport method, and application of this to

both the elastic and inelastic transport due to vibrational interactions/phonons.

1.2 Elastic transport

More than two decades ago atomic contacts between free-electron ( jellium) electrodes were investigated

theoretically by Lang [10] using DFT combined with scattering theory, and Ferrer et al. [11] used the

empirical one-orbital tight-binding method combined with NEGF. The use of the combined DFT and

NEGF methods has in recent years gained popularity in the study of molecular-scale contacts. The

strong coupling limit poses some challenges for the theoretical method on several points. Firstly, the

coupling of the contact region to the electrodes can not be treated using perturbation theory since there

are strong chemical bonds between all regions rather than tunnel barriers [12]. Secondly, there is from

the beginning no obvious way to divide the system into two electrode parts like what is done in the tunnel

perturbation approach, e.g., used for STM theory. One way to deal with the latter problem is to use an
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Figure 1.1: Schematic picture of the division of the system into a central contact (C), and ideal left (L), right
(R) electrode regions.

atomic orbital basis-set1 to expand the wave functions,

ψµ(r) =
∑

α

φα(r) cµα. (1.1)

When the basis functions φα(r) has finite range in space this enables one to divide space (Hilbert space)

into separate pieces chosen for computational convenience and calculate the electronic current between

these pieces. Since this system is neither isolated nor periodic one can not use the normal periodic

boundary conditions which are a standard ingredient in electronic structure calculations. This situation—

combined with the non-perturbative nature—can be tackled within the DFT by calculating the exact

scattering states. An alternative is to use NEGF [13, 14]. As with the scattering approach one can

with the NEGF method obtain the electronic current, density and potential at a finite applied voltage.

Furthermore the NEGF method facilitates the inclusion of interactions such as the electron-phonon

coupling, as described later Sec. 1.3.

Now we will first briefly sketch the combined DFT-NEGF approach [1], and then go though some

illustrative applications. Detailed reviews covering several related methods can be found in recent reviews,

e.g., Refs. [15, 16, 17]. We consider the following system setup: Left semi-infinite electrode (L), contact

region (C), and right semi-infinite electrode (R). We use a atomic orbital basis-set with a finite range

as implemented in the SIESTA DFT code [18]. This basis enables us to split space into these regions.2

The electrode regions L and R are chosen to have a perfect layer structure with a potential converged to

the bulk values, that is, all disturbances in the C region is assumed to be screened out here. There is no

orbital overlap or interaction directly between L and R regions. The set-up is illustrated in Fig. 1.1. In

1The orbital index α runs over all orbitals on all atoms in the system.
2The fact that these basis functions have an overlap 〈φα|φβ〉 = Sα,β has to be taken into account but does not alter the

fundamental ideas. See, e.g., Ref. [19, 1, 20] for further details.
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this case the Hamiltonian matrix takes the form,

H =









HL VL 0

V†L HC VR

0 V†R HR









, (1.2)

where the HR is a semi-infinite tri-diagonal matrix,

HR =

















hR vR 0 · · ·
v†R hR vR 0 · · ·

0 v†R hR vR
. . .

...
. . .

. . .
. . .

. . .

















, (1.3)

and like-wise for HL. The intra-layer (h) and inter-layer (v) Hamiltonians are identical to the corre-

sponding Hamiltonians for the semi-infinitely repeated layer structure for the L or R electrodes and can

be calculated once and for all using periodic boundary conditions. The electron density, n(r), is obtained

via the density-matrix, Dαβ ,

n(r) =
∑

α,β

φα(r) Dαβ φβ(r) , (1.4)

which again is related to the retarded Green’s function matrix, G,

G(E) = (E + iδ − H)
−1

, (1.5)

as

D =

∫

dE

2π
nF (E − EF ) i

[

G(E) − G†(E)
]

. (1.6)

This latter equation is only true in equilibrium when no voltage is applied between left and right elec-

trodes. We return to the non-equilibrium situation shortly.

We note that obtaining G involves the inversion of an infinite matrix which is not practical! On the

other hand all interesting properties take place within the C region since here the electron density and

potential differs from the bulk values in the electrodes (i.e., matrix elements differs from the values in

hL,R). So we basically want to consider finite matrices involving this region. For orbitals inside the C

region we can in fact write this part of G exactly as an inversion of a finite matrix (which we just denote

by G from now on),

G(E) = [E + iδ − HC − ΣL(E) − ΣR(E)]
−1

, (1.7)

where the so-called (one-electron) self-energies, ΣL,R, fully take into account the coupling of the C region

to the L and R. The self-energies can be calculated exactly due to the perfect semi-infinite layer structure
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of the electrodes, which translates into a tri-diagonal semi-infinite matrix we formally can write

HR =

(

hR vR

v†R HR

)

, (1.8)

We can obtain its inverse restricted to the first R unit-cell, gR, by an efficient iterative procedure [21]

(E + iδ − HR)
−1

=





gR(E) · · ·
...

. . .



 , (1.9)

where we do not specify the other elements (marked by “· · · ”). With this at hand, and similarly for L,

we can solve the matrix equations (1.5) and (1.7) to find

ΣL(E) = V†LgLVL , ΣR(E) = V†RgRVR . (1.10)

Roughly speaking, the real part of ΣL,R describes the change in energy levels in region C due to the

bond-formation with the L,R electrodes whereas the imaginary part is a current-operator describing the

decay (inverse life-time) of electronic states located inside region C. This latter “escape-rate” is directly

related to the electron transport and is denoted by,

ΓL(E) = i[ΣL(E) − Σ†L(E)] , (1.11)

and likewise for R. Using these and Eq. (1.7) we can also write the density matrix which specify the

density inside region C,

D =

∫

dE

2π
nF (E − EF )[(GΓLG†)(E) + (GΓRG†)(E)] , (1.12)

where we have assumed all matrices (orbital indices) now due to the “self-energy trick” are restricted

to the C region only and discarded the “CC” labels. One can show [1] that the first/second term in

Eq. (1.12) correspond to the electron density in region C due to the filling of scattering states originating

in the left/right electrode, that is,

[AL(E)]αβ ≡
[

(GΓLG†)(E)
]

αβ
=
∑

l

(clα)∗clβ , (1.13)

where clα are the orbital coefficients of the scattering states3 at energy E originating from electrode L

labeled by l, and similarly for the right.

In equilibrium these scattering states are filled to the common Fermi level EL
F = ER

F = EF . Out of

equilibrium this is not the case: In this case there is a voltage drop and a difference in the filling of the

3The scattering states are flux-normalized and divided by ~.
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scattering states and the two terms in Eq. (1.12) acquire a different Fermi function,

D =

∫

dE

2π
nF (E − EL

F )AL(E) + nF (E − ER
F )AR(E) . (1.14)

In the language of NEGF this is written in terms of the so-called “lesser” or electron distribution Green’s

function [13, 14],

D = −i
∫

dE

2π
G<(E) , G<

αβ(t) = i〈ĉ†α(t)ĉβ〉. (1.15)

The two electrodes are assumed still to be described by their bulk quantities as in Eq. (1.3) except for

a constant shift in the potential-zero and Fermi energy. Thus it is assumed that the current has spread

out and the change in density due to the non-equilibrium is screened in the L and R regions. In the

DFT method we calculate the electronic density and potential in a self-consistent cycle but now using the

expression in Eq. (1.14) for the electron density inside C. This enables us to calculate the voltage-drop

in a current-carrying device, which in the case of a strong contact is a non-trivial quantity which does

not only include the response of the electrons due to the electric potential but also the effect of the

non-equilibrium filling (the current).

Figure 1.2: Atomic gold wire connecting (100) electrodes. (a) The contours indicate the voltage drop i.e.change
in one-electron potential, V from 0V to 1V (V1V (r) −V0V (r)). The arrows indicate the direction of the forces on
the atoms due to the non-equilibrium. (b) Iso-density surfaces for the change in density from 0V to 1V. Dark is

deficit and white is extra electron density. The solid (dotted) surface correspond to ±5 ·10−4e/Å
3

(±2 ·10−4e/Å
3
).

From Ref. [22].

An illustration of this is shown in Fig. 1.2 where an 3-atom long atomic gold wire is considered

connecting two (100) electrodes with EL
F − ER

F = 1 eV. The voltage is not dropping linearly across the

wire but mainly in the bond between atom 1 and 2. The reason for the asymmetry can be traced back to

the fact that the wire loose electronic charge with the applied voltage and become slightly more positive

with bias. The non-equilibrium situation changes the electron density in the atomic bonds and will

lead to forces and structural changes. The voltage drop has been analyzed in calculations for molecular
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conductors in e.g. [23, 24].

In the case of no interactions beyond the mean-field potential (e.g.electron-phonon cf. next section)

the current can be cast in the Landauer-Büttiker [25] form,

I = G0

∫

dE (nF (E − EL
F ) − nF (E − ER

F )) Tr[t†t](E) (1.16)

= G0

∫

dE (nF (E − EL
F ) − nF (E − ER

F ))Ttot(E) , (1.17)

where G0 = 2e2/h is the conductance quantum. The transmission amplitude matrix involves the current-

operators to the left and right electrodes and the matrix elements of the retarded Green’s function between

orbitals connecting L and R in a Fisher-Lee type relation [26, 27],

t = (ΓR)1/2 G (ΓL)1/2 . (1.18)

The transmission itself depends on the applied voltage through the change in the self-consistent potential

landscape in the C region (i.e.the change in HC in Eq. (1.2) with applied voltage) and the rigid potential

shifts of the electrodes relative to each other. An equivalent and popular way to write the current is,

I = G0

∫

dE (nF (E − EL
F ) − nF (E − ER

F )) Tr[ΓRAL] , (1.19)

corresponding to finding the current into the right electrode using ΓR of the scattering states originating

from the left electrode described by AL.

1.2.0.1 Example: Atomic metal contacts

For atomic metal contacts the total transmission, Ttot(E) can take values greater than 1 corresponding

to several transmitting channels. This can be investigated using the so-called transmission eigen-channels

[28, 29],

Ttot(E) =
∑

n

τn(E), (1.20)

which correspond to a basis change of scattering states so that t becomes diagonal with values 0 ≤ τn ≤ 1

in the diagonal. By plotting the corresponding scattering states at a particular energy one can get

information on what orbitals contribute to the conduction. As an example, we consider a platinum atomic

wire in Fig. 1.3 where two highly transmitting channels exist for that particular atomic configuration.

From the plots of these two channels it is qualitatively seen how the d-orbitals enter these: The first

channel has an angular momentum m = 0 character and involves dz2 orbitals on the wire atoms while

the second channel involves higher angular momentum d orbitals.4

In the case of atomic gold wires the d-electrons do not participate significantly in the conduction

which is mainly carried by a single channel consisting of zero angular momentum states around the wire

axis (mainly 6s). The 6s orbitals have a greater range and larger ss matrix elements compared to the d

4Note that the left-right symmetry is broken since we consider scattering states originating in the right electrode.
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Figure 1.3: The total transmission and eigenchannel transmissions for a platinum wire (at zero voltage). The
scattering states corresponding to the two highest transmitting channels at the Fermi energy are shown. These
clearly involve d orbitals of different character (the color indicates the phase of the wavefunction). The channel
involving dz2 orbitals(upper) has least variation in eigenchannel transmission with energy.

orbitals. The effect of this can be seen in the big variation of the conductance with interatomic distances

in Pt compared to Au [30], but also in the I − V characteristics.

To illustrate this latter effect we consider in Fig. 1.4 a comparison between simplified gold and platinum

single-atomic contacts. For Au the transmission at zero bias is dominated by a single, broad channel of

mainly 6s character resulting from the strong coupling of these orbitals. For almost constant channel

transmissions within the voltage window, and without a change of the transmission behavior with voltage,

we anticipate from Eq. (1.20) and (1.17) a quite linear I −V . This turns out to be the case since we find

that the change in channel behavior with bias below a couple of volts is very small for Au. This is in

contrast to Pt. Here we find 4 channels with significant contributions and a much stronger variation with

energy for zero bias. Note that the dyz, dzx channels are degenerate while the dxy and dx2−y2 channels are

split due to the symmetry of the (100) electrodes. Additionally the s and dz2 channel at certain energies

split into two contributing channels. From the strong variation with energy and rich structure we do not

anticipate a linear I − V and furthermore we cannot expect the channel structure to be independent of

bias: Indeed for finite bias we find that a significant change in the {dyz, dzx, dxy, dx2−y2} derived channels

which become less transmitting and downshifted in energy, whereas the broader s derived channel is not

prone to the shift in potential.

Thus we find that the reason for the decrease in conductance with bias for Pt is due to the significant

participation of the d electrons in the transport: The d electrons are more easily scattered by the voltage

induced potential which in this case is of the same order of magnitude as the strength of the coupling

to the electrodes. The same argument goes for the variation with atom-electrode distance. Here it is

essentially the d contributions which decrease as the distance increases.
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Figure 1.4: Comparison of the I−V characteristics of a simplified Au and Pt single-atom contact. The z direction
is defined to be perpendicular to the electrode surfaces. (a) Atomic structure (atom-surface distance shown in
Å) of a single atom contact of Au and Pt between (100) electrodes and corresponding I − V . (b) Eigenchannel
decomposition of the total transmission through the atoms for Au for 0 V and 1 V (left panels) and Pt for 0 V and
0.8 V (right panels). The channels are labeled by their main orbital components (z is the direction perpendicular
to the electrode surfaces). The gray dashed lines indicate the voltage window. From Ref. [30].

1.3 Inelastic transport

Steered partly by the experimental findings there is now an increasing interest in the theoretical modeling

of the electron-vibration5 processes in electron transport. While there has already been many studies

devoted to transport with phonon interaction based on model-type Hamiltonians emphasizing various

aspects of the transport [31, 32, 33, 34, 35, 36], there has only been a hand-full of studies based on a first-

principles description including all aspects of the e-ph transport problem within the same approach, such

as atomic structure, vibrational modes and frequencies, and transport. The inelastic transport problem

is conveniently formulated using the tight-binding description of the electronic structure discussed in the

previous section. Within this formulation the transport can be based on electronic structure ranging from

approximate parameterizations, such as the Hückel or extended Hückel [37, 38], to DFT and beyond. In

the following we will give a few examples of work based on first-principles methods, which so far almost

5We will here use the term ”phonon” also for localized quantum vibrations and use the term phonon and vibration on
equal footing.
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entirely has been DFT-based.

In the tunneling regime inelastic effects has been investigated by Scanning Tunneling Microscopy

(STM) yielding atomic resolution of the inelastic tunneling process. The STM inelastic images been

simulated theoretically by Lorente and Persson based on DFT and the Tersoff-Hamann approach [39, 40].

Also the controlled conformational changes, motion and chemistry induced by the inelastic tunnel current

in STM has been addressed [41, 42, 43]. More recently the regime where a molecular/atomic-scale

conductor is strongly coupled to both electrodes has been investigated. Chen and co-workers have studied

inelastic scattering and local heating in an atomic gold contact, a thiol-bonded benzene [44, 45], and

alkane-thiols [46]. The inelastic signals were calculated using a golden-rule-type of expression and the

DFT scattering states where the systems are adsorbed on electrodes represented by a jellium [47]. Based

on the self-consistent tight-binding procedure with parameters obtained from DFT Pecchia et al. [2] has

considered on vibrational effects in octane-thiols bonded to gold electrodes [48] using NEGF and the

Born approximation for the self-energy of the phonon interaction. Recently Solomon et al. used this

method to simulate the experimental IETS spectra of Wang [49] for this system. Sergueev et al. studied

a 1,4-benzenedithiolate molecule contacted by two aluminum leads [50]. This study addressed the bias

dependence of the vibrational modes and e-ph coupling constants, which were calculated using NEGF-

DFT method at finite bias. While the vibrational spectrum is almost unchanged, a significant increase

was found for high biases (> 0.5 Volts). Finally, Troisi and Ratner has suggested an simplified approach

from which IETS signals can be calculated approximately based on a calculation on an isolated molecule

and neglecting the electrodes [51]. The hybrid DFT B3LYP method was used to describe vibrations and

electronic structure. A related method has also been used by Jiang et al. [52].

We have also looked at atomic gold wires and hydrocarbon molecules between gold electrodes using

DFT and we will give a brief introduction and a few examples in the next section.

1.3.1 Phonon interaction: Self-consistent Born Approximation (SCBA)

Again, the starting point is the system set-up and electronic Hamiltonian in Eq. (1.2). We employ the

standard adiabatic approximation and consider the atomic positions as a parameter in the electronic

Hamiltonian. We restrict the atomic motion to the central region C, use the harmonic approximation,

and determine the normal vibrational modes (λ) and their frequencies (ωλ) for selected atoms embedded

in region C, denoted by the small displacements Qλ. We can choose the C region large enough so only

HC will depend on the atomic motion around the equilibrium positions. To lowest order we have

HC(Q) ≈ HC(0) +
∑

λ

∂HC

∂Qλ
· Qλ, (1.21)

or explicitly quantizing the harmonic motion,

HC(Q) ≈ HC(0) +
∑

λ

Mλ(b̂†λ + b̂λ) , (1.22)
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where b̂†λ is the phonon creation operator. The coupling matrices for each mode, Mλ, are calculated in

the atomic orbital basis set using finite differences [53]. Thus all modes and parameters (ωλ, Qλ,Mλ),

can be determined using DFT without using fitting parameters. The NEGF method is especially ideal

for a systematic treatment of the non-equilibrium situation in combination with interactions beyond the

mean-field approximation, e.g.as employed by DFT. It is possible to go to infinite order in the perturbing

Mλ using the self-consistent Born approximation (SCBA) [14]. This amounts to solving the not only the

retarded Green’s function, G, including the phonon interaction, but also solve for the Green’s function

related to the occupied states (G<) introduced in the previous section, and equivalently for the empty

states (G>). Note that these are not simply related via a Fermi function due to the non-equilibrium

situation. Since the emission or absorbtion of phonons depend on the filling of states, the phonon

self-energies the scattering used to obtain the Green’s functions will depend on the Green’s functions

themselves. Thus a self-consistent calculation is called for. For example, the filled states at energy E

(G<(E)) depend on the scattering rate for scattering into these states due to the phonon interaction, as

described by the ”lesser” phonon self-energy:

Σ<
λ (E) = Mλ

[

(Nλ + 1)G<(E + ~ωλ) +NλG
<(E − ~ωλ)

]

Mλ . (1.23)

Here the first term correspond to phonon emission and involves thus the occupied states at E + ~ω,

while the second to phonon absorption, Nλ being the phonon occupation of mode λ. We will not go

further into the formalism here, but just conclude that even the lowest order self-energy for the inelastic

scattering yield much more demanding computations involving a grid of different energies which mix in the

equations, and a self-consistency, as compared to the elastic case. More details on the theory, equations,

and computation can be found in Ref. [54]. In the next section we discuss a simpler approximate approach

to the inelastic transport valid in the weak e-ph coupling limit, which involve about the same amount of

computation as the elastic conductance, once the phonons and phonon-couplings are determined.

1.3.1.1 Example: Atomic gold wire

As an example of the method we consider the application of it to the inelastic transport in 4-atom long

gold wires just before rupture [55]. This is probably the most well-studied atomic-sized conductor, and a

great deal of detailed information is available from experiments for comparison. For example it is known

that the typical force mediated by the wire at fracture is 1.5 nN [56]. We consider in Fig. 1.5 two stages

of strain corresponding to electrode separations of L = 12.22 Å and L = 12.68 Å corresponding to a force

of about 0.5 nN and 1.5 nN. In the results displayed in Fig. 1.6 the phonon occupation is kept constant

(almost zero) corresponding to the experimental temperature T = 4.2 K. This corresponds to a situation

where the vibration is loosing all its energy obtained from the electronic current to an external source such

as phonons in the electrodes.6 The results of the calculation reproduce main features of the experiments:

(i) A single main conductance drop is observed, (ii) the order of magnitude of the conductance drop, (iii)

6The damping is not included in the dynamics of the oscillator which is valid when the damping rate is much smaller
than the vibrational frequency.
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the mode softening, and (iv) the increased phonon signal with strain. A frequency shift with elongation

( ∆ω/∆L = −7 meV/Å) corresponding to a softening of the bonds in the wire is also in accordance with

the experiments.

The fact that only a single main drop is observed can be traced back to the symmetry of the electronic

states at the Fermi level. These states are mainly composed of s orbitals (see Fig. 1.6) as discussed in the

previous section. The symmetry dictates that this state mainly couple to longitudinal vibrations where

the bond-length is alternating inside the wire.

(a)

(b)

Figure 1.5: Geometry of a four atom gold wire un-
der two different states of stress corresponding to
an electrode separation of (a) L = 12.22Å and (b)
L = 12.68Å. The gold electrodes are modelled by
perfect (100) surfaces. The alternating bond length
(ABL) modes, which cause the inelastic scattering,
are shown schematically below each structure, to-
gether with mode energies ωλ and reduced conduc-
tance drop ∆G/G(0V). The displayed interatomic
distances are measured in units Å.
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Figure 1.6: Differential conductance and its deriva-
tive for the four atom gold wire at two different
tensions in the case where the oscillators are exter-
nally damped (Nλ ≈ 0). All modes are included
in this calculation. Below, the state at EF respon-
sible for the transport is shown (similar for both
chain-lengths).

A closer look at the experimental results show a slight slope of the conductance versus voltage after the

onset of the vibrational excitation [57]. This can be explained to be due to heating of the vibrations caused

by the electronic excitation. We can take the opposite limit assuming that there is no external damping

mechanism (e.g. phonons in the electrodes) keeping the occupation fixed. In this case the vibration can

only loose energy to electronic excitations and the number of phonons is determined by the excitation

and de-excitation due to the coupling to the electronic degrees of freedom. For a given bias voltage we

can use the fact that the system is in a steady state and we require that the net power into the vibration

must be zero. The power can be obtained using the NEGF as well [55]. This in turn puts a restriction on

Nλ. For simplicity we include only the most important mode. The idea is illustrated in Fig. 1.7 where the

power balance for different fixed mode occupations is shown. For low bias and finite phonon excitation

we will have energy transfer from the phonon subsystem to the electrons - that is vibrational damping

due to the electron-hole pair excitation. For increasing voltage each power curve crosses the abscissa at
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one particular point (marked with a dark circle) corresponding to power balance between the electronic

and phonon subsystems: Hence the crossing point sets the occupation at the corresponding bias voltage

when we assume a steady state. At a voltage V = 55mV the occupation is found to be the same as

if the mode was occupied according to a Bose-Einstein distribution with temperature T = 300K. The

conductance calculation is shown in Fig. 1.8a. Compared with the externally damped results Fig. 1.6, the

notable differences are a slightly larger drop as well as a finite slope in the conductance beyond the onset

of inelastic scattering. This increase in backscattering with voltage beyond the threshold is simply due

to the fact that the probability for emitting a phonon and thus backscattering increase with increasing

number of phonons present.
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Figure 1.7: Net power transferred from the elec-
trons to the phonon mode vs. bias voltage for dif-
ferent (fixed) occupations N . The data shown here
for L = 12.22Å are representative for both geome-
tries.
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Figure 1.8: (a) Differential conductance and its
derivative for the four atom gold wire at two dif-
ferent tensions in the externally undamped limit.
Only the most important mode is included in this
calculation. (b) Mode occupation N vs. bias volt-
age.

Quantitatively we find a slope (dG/dV ) which is only slightly larger than detected for relatively long

atomic gold wires. Including the damping due to the coupling to electrode phonons one can expect

that the typical damping conditions lead to conductance curves in between Fig. 1.6 and 1.8a. However,

measurements are the closest to the externally undamped limit, which suggests that such mechanisms

are weak and that the mode “heating” a significant element.

1.3.2 Phonon interaction: Lowest order expansion (LOE)

As mentioned above, the solution of the SCBA equations is a daunting numerical task for systems

consisting of more than a handful of atoms. However, for systems where the e-ph coupling is weak and

the density of states (DOS) varies slowly with energy, we have previously derived the LOE approximation

[58].
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The LOE approximation assumes that the retarded and advanced single-particle Green’s functions and

electrode self-energies are energy independent. We can then expand the current and power expressions to

the lowest order (second) in e-ph couplings Mλ and perform the energy integrations analytically. These

integrals consist of products of Fermi-Dirac functions and their Hilbert transforms. The LOE thus retains

the Pauli exclusion principle for fermionic particles, which is necessary to model the blocking of phonon

emission processes at low bias.

The flow of energy or power can, just as the flow of particles, be obtained with the NEGF formalism.

In the LOE approximation, the total power dissipated into the phonon system P LOE ≡ PL + PR can,

after lengthy derivations, be written [58]

PLOE =
∑

λ

(~ωλ)
2

π~
[nB(~ωλ) −Nλ] Tr [MλAMλA] (1.24)

+ P(V, ~ωλ, T ) Tr
[

MλGΓLG†MλGΓRG†
]

, (1.25)

P =
~ω

π~

[cosh
(

eV
kBT

)

− 1] coth
(

~ω
2kBT

)

~ω − eV sinh
(

eV
kBT

)

cosh
(

~ω
kBT

)

− cosh
(

eV
kBT

) , (1.26)

where the Bose-Einstein distribution nB(ε) appears naturally from the integration of the Fermi-Dirac

functions of the electrons in the contacts. Here G, ΓL/R, and A = AL + AR are the non-interacting

equilibrium quantities introduced in Sec. 1.2 and evaluated at the Fermi-level EF . The first term in

Eq. (1.25) describes the equilibrium energy exchange between the vibrational and electronic degrees of

freedom (electron-hole damping of the vibrations [59]), while the second term includes the emission of

vibrational quanta at finite bias. Furthermore, it can be shown that

Tr [MλAMλA] ≥ 2Tr
[

MλGΓLG†MλGΓRG†
]

, (1.27)

which implies that the electron-hole damping constant [rate] is at least twice the emission constant [rate]

of vibrations, i.e., there exists an upper bound on the mode occupation Nλ [60]. For eV � ~ω this bound

can be expressed as

Nλ ≤ (eV/~ωλ − 1)/2. (1.28)

The LOE approximations, which above was applied to the power, also allow us to write the current
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through the device ILOE as [58, 61]

ILOE = G0V Tr
[

GΓRG†ΓL

]

(1.29)

+
∑

λ

Isym(V, ~ωλ, T,Nλ)

×Tr

[

G†ΓLG

{

MλGΓRG†Mλ +
i

2

(

ΓRG†MλAMλ − h.c.
)

}]

+
∑

λ

Iasym(V, ~ωλ, T )

×Tr
[

G†ΓLG
{

ΓRG†MλG (ΓR − ΓL) G†Mλ + h.c.
}]

, (1.30)

Isym =
e

π~

(

2eV 〈nλ〉 +
~ωλ − eV

e
~ωλ−eV

kBT − 1
− ~ωλ + eV

e
~ωλ+eV

kBT − 1

)

, (1.31)

Iasym =
e

2π~

∞
∫

−∞

[nF (ε) − nF (ε− eV )] (1.32)

×Hε′{nF (ε′ + ~ωλ) − nF (ε′ − ~ωλ)}(ε)dε,

where the bias is defined via eV = ER
F − EL

F . The Hilbert transform is defined as Hx{f}(y) =

1/πP
∫∞

−∞
dxf(x)/(x−y). The above expression is current conserving, i.e., calculating the current at the

left and right contacts give the same result.

The LOE expression Eq. (1.30) for the current contains three terms, (i) the Landauer-Büttiker term

corresponding to the elastic conductance, (ii) the “symmetric” term to symmetric conductance steps at

the vibrational energies, and (iii) the “asymmetric” term to peaks and dips in the conductance which are

asymmetric with voltage inversion, see Fig. 1.9. For geometrically symmetric junctions, it can be shown

that the asymmetric term vanishes exactly. Even for geometrically asymmetric systems we typically find

that it is a very small contribution compared with the symmetric term. Furthermore, the sign of the

conductance step for the symmetric term in general shows an increase (decrease) in the conductance

for low (high) conducting systems, e.g., vibrations usually help electrons through molecules while they

backscatter electrons in atomic wires. This is discussed further for a one-level model in Ref. [62].

The LOE approximation is computationally simple and can be applied to systems of considerable size.

Although the approximation is not strictly valid for systems with energy-dependent DOS, comparison

with the full SCBA calculations shows good agreement even for systems that have a slowly varying DOS

(on the scale of vibrational energies), e.g., the organic molecules connected to gold electrodes described

in the next section. The LOE approximation will certainly fail when sharp (compared to the vibrational

energies) resonances are present within the order of phonon energies of the Fermi energy. However, in this

case Coulomb blockade is expected and the electron-electron interactions dominant. It is our experience

that the LOE approximation is a valuable tool that may be used (with caution) for systems with a slowly

varying DOS.
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Figure 1.9: Universal functions Eq. (1.31) and (1.33) giving symmetric and asymmetric phonon contributions to
the conductance, respectively. The differential conductance dI/dV and the second derivative d2I/dV 2 are shown
(in arbitrary units) for one phonon mode for three different temperatures (a) kBT/~ωλ = 0.02, (b) kBT/~ωλ =
0.06, and (c) kBT/~ωλ = 0.10.

1.3.2.1 Example: Hydrocarbon molecules between gold contacts

We will now illustrate the use of the LOE on molecules [60], and especially that the LOE approximation

is valid for a wide range of systems even where at first glance it might fail. Measurements of the inelastic

scattering signal through three different molecules connected to gold electrodes have been carried out by

Kushmerick et al. [63] Since the number of molecules present in the experimentally realized junction is

unknown it is advantageous to look at the inelastic electron tunneling spectroscopy (IETS) signal:

IETS ≡ d2I/dV 2

dI/dV
(1.33)

which, if the current (I) simply scales with the number of molecules, is independent of the number of

molecules in the junction.

Both the calculated and measured IETS for the conjugated OPE molecule (the molecule is drawn

in Fig. 1.11b is shown in Fig. 1.10. For calculational details we refer to Ref. [60] As we can see the

calculations reproduce the positions and relative heights of the inelastic scattering peaks. The three main

peaks are given by four types of vibrations which all except the C–S stretch affect the carbon-backbone

of the molecule. The dynamic atoms region used in the calculation contains 162 vibrational modes from
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Figure 1.10: Calculated IETS compared to the experimental data from Ref. [63]. The inelastic scattering peaks
arise from three different kinds of vibrations localized on the molecule. Reproduced from Ref. [60].

54 atoms, 18 Au plus the 36 atoms of the molecule. It is therefore relevant to discus selection rules, i.e.,

why only seven vibrations (three of the four types of vibrations are double degenerate) affect the current.

The calculations in Ref. [60] were carried out using the LOE approximation giving similar agreement

with experiments for all three molecules studied as for the OPE molecule, see Fig. 1.10. However, electron

conduction through these molecules is through the energy gap of the molecule where the transmission is

not energy independent. The use of the LOE approximation may therefore seem inappropriate for these

systems. We have therefore undertaken the tedious task to compare the LOE approximation to the full

SCBA for the two conjugated molecules, see Fig. 1.11.

Since the SCBA is computationally expensive it was not possible to use the same accuracy in the

calculations as in the LOE results. We therefore used only the molecule as the device subspace and

dynamic atoms region, a smaller basis set (SZP) describing the OPE (OPV) molecule with 264 (280)

atomic orbitals and only included the 5 (3) most important vibrational modes (selected from the LOE

calculation). Calculating the current at 81 (61) bias points using an average of 9 (8) iterations to converge

the SCBA on an energy grid of approximately 500 points took 40 (18) hours on 10 P4 computers in parallel.

In comparison, the LOE approximation takes less than 1 minute on one processor.

The results shown in Fig. 1.11 reveal that the LOE approximation captures the inelastic scattering

signal to a surprising accuracy. Also, the main discrepancy is directly related to the elastic part of the

transport which can easily be corrected for without solving the full SCBA equations. We thus conclude

that the LOE approximation can be used for molecular electronics with a significant degree of confidence.
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Figure 1.11: Hydrocarbon molecules OPV (upper) and OPE (lower).

1.4 Conclusions

We outlined and gave examples of atomistic transport theory which combine DFT and NEGF. From a

fundamental point of view the use of the Kohn-Sham eigenfunctions of DFT as bona fide single-particle

eigenstates for use in the transport calculation is not justified. On the other hand the reasonable agree-

ment with experiments in many cases show that the somewhat pragmatic approach is rewarding and can

contribute significantly to the understanding of these, see, e.g., the most recent Refs. [64, 65]. Moreover,

the DFT seems to be a good starting-point for further theoretical developments as mentioned in the

introduction, as well as new areas of applications, for example in molecular spintronics [66, 3].

The role of phonon interaction and local heating is of importance when predicting the characteristics

and stability of nano-scale electronic devices, see e.g. Ref. [67] for a recent review on the theory. The

complete treatment of electrons and phonons on an equal footing is yet to be developed in atomistic

ab-initio calculations, i.e., taking the effects of the electrons on the phonon behavior into account in a

self-consistent manner. However, as presented here, theory has been developed which takes the phonon-
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interaction and its effect on the electronic current into account based on DFT combined with the NEGF

formalism and the self-consistent Born approximation, or an efficient lowest order expansion applicable

also for large systems. This approach works very well for weak electron-phonon coupling in molecular-

scale conductors. In this type of theory the power delivered to the phonons can be taken into account

and the phonon-occupation can be determined using simple rate arguments.
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[25] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula

with application to small rings, Phys. Rev. B 31(10), 6207–6215 (1985).

[26] D. S. Fisher and P. A. Lee, Relation between conductivity and transmission matrix,

Phys. Rev. B 23(12), 6851–6854 (1981).

[27] J. C. Cuevas, A. Levy Yeyati, and A. Mart́ın-Rodero, Microscopic origin of conducting channels in

metallic atomic-size contacts, Phys. Rev. Lett. 80(5), 1066–1069 (1998).

[28] Th. Martin and R. Landauer, Wave-packet approach to noise in multichannel mesoscopic systems,

Phys. Rev. B 45(4), 1742–1755 (1992).



Bibliography 31

[29] M. Brandbyge, M. R. Sorensen, and K. W. Jacobsen, Conductance eigenchannels in nanocontacts,

Phys. Rev. B 56(23), 14956–14959 (1997).

[30] S. K. Nielsen, M. Brandbyge, K. Hansen, K. Stokbro, J. M. van Ruitenbeek, and F. Besenbacher,

Current-voltage curves of atomic-sized transition metal contacts: An explanation of why au is ohmic

and pt is not, Phys. Rev. Lett. 89(6), 066804 (2002).

[31] L. de la Vega, A. Martin-Rodero, N. Agrait, and A. L. Yeyati, Universal features of electron-phonon

interactions in atomic wires, Phys. Rev. B 73(7), 075428 (2006).

[32] K. Flensberg, Tunneling broadening of vibrational sidebands in molecular transistors,

Phys. Rev. B 68(20), 205323 (2003).

[33] M. Galperin, A. Nitzan, and M. A.Ratner, Resonant inelastic tunneling in molecular junctions,

Phys. Rev. B 73(4), 045314 (2006).

[34] M. J. Montgomery, J. Hoekstra, T. N. Todorov, and A. P. Sutton, Inelastic current-voltage spec-

troscopy of atomic wires, J. Phys.: Condens. Matter 15(4), 731–742 (2003).

[35] H. Ness and A. J. Fisher, Vibrational inelastic scattering effects in molecular electronics,

Proc. Natl. Acad. Sci. U.S.A. 102(25), 8826–8831 (2005).

[36] H. Ness, S. A. Shevlin, and A. J. Fisher, Coherent electron-phonon coupling and polaronlike transport

in molecular wires, Phys. Rev. B 63(12), 125422 (2001).

[37] Y. Asai, Theory of inelastic electric current through single molecules, Phys. Rev. Lett. 93, 246102

(2004); Erratum, Phys. Rev. Lett. 94, 099901(E) (2005).

[38] T. Yamamoto, K. Watanabe, and S. Watanabe, Electronic transport in fullerene c-20 bridge assisted

by molecular vibrations, Phys. Rev. Lett. 95(6), 065501 (2005).

[39] N. Lorente and M. Persson, Theoretical aspects of tunneling-current-induced bond excitation and

breaking at surfaces, Discuss. Faraday Soc. 117, 277–290 (2000).

[40] N. Lorente, M. Persson, L. J. Lauhon, and W. Ho, Symmetry selection rules for vibrationally inelastic

tunneling, Phys. Rev. Lett. 86, 2593 (2001).

[41] N. Lorente, R. Rurali, and H. Tang, Single-molecule manipulation and chemistry with the stm,

J. Phys.: Condens. Matter 17(13), S1049–S1074 (2005).

[42] H. Ueba, Motions and reactions of single adsorbed molecules induced by vibrational excitation with

stm, Surf. Rev. Lett. 10(5), 771–796 (2003).

[43] H. Ueba, T. Mii, N. Lorente, and B. N. J. Persson, Adsorbate motions induced by inelastic-tunneling

current: Theoretical scenarios of two-electron processes, J. Chem. Phys. 123(8), 084707 (2005).



32 First-principles approach for the calculation of electronic transport at molecular scale

[44] Y. C. Chen, M. Zwolak, and M. Di Ventra, Local heating in nanoscale conductors, Nano Lett. 3(12),

1691–1694 (2003).

[45] Y. C. Chen, M. Zwolak, and M. Di Ventra, Inelastic current-voltage characteristics of atomic and

molecular junctions, Nano Lett. 4(9), 1709–1712 (2004).

[46] Y. C. Chen, M. Zwolak, and M. Di Ventra, Inelastic effects on the transport properties of alkanethiols,

Nano Lett. 5(4), 621–624 (2005).

[47] M. Di Ventra and N. D. Lang, Transport in nanoscale conductors from first principles,

Phys. Rev. B 65(4), 045402 (2002).

[48] A. Pecchia, A. Di Carlo, A. Gagliardi, S. Sanna, T. Frauenheim, and R. Gutierrez, Incoherent

electron-phonon scattering in octanethiols, Nano Lett. 4(11), 2109–2114 (2004).

[49] G. C. Solomon, A. Gagliardi, A. Pecchia, T. Frauenheim, A. Di Carlo, J. R. Reimers, and H. S. Hush,

Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold, J. Chem. Phys. 124,

094704 (2006).

[50] N. Sergueev, D. Roubtsov, and H. Guo, Ab initio analysis of electron-phonon coupling in molecular

devices, Phys. Rev. Lett. 95(14), 146803 (2005).

[51] A. Troisi and M. A. Ratner, Modeling the inelastic electron tunneling spectra of molecular wire

junctions, Phys. Rev. B 72, 033408 (2005).

[52] J. Jiang, M. Kula, W. Lu, and Y. Luo, First-principles simulations of inelastic electron tunneling

spectroscopy of molecular electronic devices, Nano Lett. 5(8), 1551–1555 (2005).

[53] M. Headgordon and J. C. Tully, Vibrational-relaxation on metal-surfaces - molecular-orbital theory

and application to co/cu(100), J. Chem. Phys. 96(5), 3938–3949 (1992).

[54] T. Frederiksen, M. Paulsson, M. Brandbyge, and A. P. Jauho, Inelastic transport theory from first-

principles: Methodology and applications, to be submitted to Phys. Rev. B September 2006.

[55] T. Frederiksen, M. Brandbyge, N. Lorente, and A.-P. Jauho, Inelastic scattering and local heating

in atomic gold wires, Phys. Rev. Lett. 93, 256601 (2004).

[56] G. Rubio-Bollinger, S. R. Bahn, N. Agrait, K. W. Jacobsen, and S. Vieira, Mechanical properties

and formation mechanisms of a wire of single gold atoms, Phys. Rev. Lett. 87(2), 026101 (2001).

[57] N. Agrait, C. Untiedt, G. Rubio-Bollinger, and S. Vieira, Onset of energy dissipation in ballistic

atomic wires, Phys. Rev. Lett. 88(21), 216803 (2002).

[58] M. Paulsson, T. Frederiksen, and M. Brandbyge, Modeling inelastic phonon scattering in atomic-

and molecular-wire junctions, Phys. Rev. B 72(20), 201101 (2005).



Bibliography 33

[59] M. Persson and B Hellsing, Electronic damping of adsorbate vibrations on metal-surfaces,

Phys. Rev. Lett 49(9), 662–665 (1982).

[60] M. Paulsson, T. Frederiksen, and M. Brandbyge, Inelastic transport through molecules: Comparing

first-principles calculations to experiments, Nano Lett. 6(2), 258–262 (2006).

[61] J. K. Viljas, J. C. Cuevas, F. Pauly, and M. Hafner, Electron-vibration interaction in transport

through atomic gold wires, Phys. Rev. B 72(24), 245415 (2005).

[62] M. Paulsson, T. Frederiksen, and M. Brandbyge, Phonon scattering in nanoscale systems: lowest

order expansion of the current and power expressions, Journal of Physics, Conference Series 35,

247–254 (2005).

[63] J. G. Kushmerick, J. Lazorcik, C. H. Patterson, R. Shashidhar, D. S. Seferos, and G. C. Bazan,

Vibronic contributions to charge transport across molecular junctions, Nano Lett. 4(4), 639–642

(2004).

[64] J. He, O. Sankey, M. Lee, N. J. Tao, X. L. Li, and S. Lindsay, Measuring single molecule conductance

with break junctions, Faraday Discuss. 131, 145–154 (2006).

[65] L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of

single-molecule junction conductance on molecular conformation, Nature 442(7105), 904–907 (2006).

[66] V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and

I. Mertig. Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet,

Phys. Rev. Lett. 97(9), 097201 (2006).

[67] A. P. Horsfield, D. R. Bowler, H. Ness, C. G. Sánchez, T. N. Todorov, and A. J. Fisher, The transfer

of energy between electrons and ions in solids, Rep. Prog. Phys. 69, 1195–1234 (2006).



34 First-principles approach for the calculation of electronic transport at molecular scale



35

Chapter 2

Order N Methods for Quantum

Transport

S. Roche
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2.1 Introduction

Today’s research endeavours in molecular electronics or nanoelectronics rely on both : advanced top-down

and bottom-up techniques to fabricate and engineering functional molecular based devices and circuits,

but also advanced computational schemes that enable in-depth exploration of their novel properties and

ultimate performances. The numerical simulation strategy of material and devices at the nanoscale is

twofold. On one hand, first principles (ab initio) methods, such as Density Functional Theory (DFT) and

its extensions push the limits of realistic simulation of the physico-chemical complexity at the atomistic

scale, searching for elaborated description of electron-electron correlations, to the price of limited imple-

mentation for large scale simulations and out-of equilibrium problems. On the other hand, semi-empirical

approaches provide a more suitable basis for simulating large scale systems, albeit limited to effective

hamiltonians with adjustable parameters. Both directions rely however on approximations of the true

many-body problem. The combination of both approaches opens new perspectives to circumvent intrinsic

limitations of separated methods, enabling to explore advanced quantum transport phenomena in mate-

rials and devices with large chemical complexity. To compute current-voltage characteristics of realistic
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nanodevices, efficient linear scaling computational methodologies of quantum transport at equilibrium

and far for equilibrium are of crucial importance.

In this contribution, we will review our developed order N scaling transport methods, that allow to

efficiently compute either the Kubo-Greenwood or the Landauer-Büttiker conductance in materials or

heterojunctions of large complexity (provided we restrict to physical situations close to thermodynamic

equilibrium). These methods are based on the recursive construction of either orthogonal (Lanczos-

scheme) or bi-orthogonal basis in which hamiltonian matrices are first tridiagonalized, and continued-

fraction expansion further used to accurately compute off-diagonal Green’s function matrix elements.

They turn out to be of broad range of applicability and well suited for real space calculations, so using

expansion of wavefunctions in localized basis sets. This includes semi-empirical or ab initio methods

based on localized functions and implemented within DFT method such as SIESTA [1]. Following the

same philosophy out-of equilibrium methods could be further investigated.

2.2 Kubo-Greenwood and Landauer-Büttiker real space order

N methods

2.2.1 Conduction mechanisms and conductance scaling

Efficient computational recursion and order N methods have been successfully developed in solid-state

physics since their introduction by R. Haydock [2, 3, 4, 5]. The recursion methods are based on an

eigenvalue approach of Lanczos [6], and rely on the computation of Green’s functions matrix elements

by continuous fraction expansion, which can be implemented either in real or reciprocal spaces. These

techniques are particularly well suited for treating disorder and defect-related problems, and were suc-

cessfully implemented to tackle with impurity-level calculations in semiconductors using tight-binding

approximation [7], or with electronic structure investigations for amorphous semiconductors, transition

metals and metallic glasses based on the linear-muffin-tin orbitals [8].

On the other hand, the general electronic transport theory in the linear response regime relies on

the approach derived by R. Kubo [9]. In its zero frequency limit, it reduces to the trace of the operator

δ(E−H)V̂xδ(E−H)V̂x, that relates the spectral measure operator δ(E−H) to the velocity operator V̂x.

Electronic dc-conductivity is thus seen as a measure of autocorrelation average of wavepackets velocities.

During the past decade, we have endeavoured the implementation of the recursion method in the calcula-

tion of the Kubo-Greenwood transport coefficients [10, 11, 12]. This approach, optimized over the years,

is mainly based on the resolution of the time dependent Schrödinger equation (TDSE) employing an

expansion of the spectral measure onto a basis of orthogonal (typically Chebyshev) polynomials Qn(E).

By doing so, any operator can be expanded within the same basis as

|Ψ(t)〉 = exp(−iHt
~

)|Ψ(0)〉
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=

N
∑

n=0

(∫

n(E)e−i Et
~ Qn(E)dE

)

Qn(H)|ψ(0)〉

which allows an efficient and quick resolution of TDSE. Afterwards the diffusion coefficient as well as

the related Kubo conductance can be straightforwardly computed as

D(E, t) =
1

t
〈(X̂(t) − X̂(0))2〉E

G(E) =
2e2

Lsyst
lim

t→τL

Tr[δ(E −H)D(E, t)]

given their direct relation to the time-dependence of electronic wavepackets. The calculation of both

quantities can be reduced to the computation of on-diagonal Green’s function that are achieved by

a continuous fraction expansion. From this methodology we have been able to analyze all the main

conduction mechanisms in the quantum coherent regime in various low-dimensional systems or disordered

materials. They include the

• Ballistic regime: G(E) = (2e2/h)N(E)

• Diffusive regime: G(E) = (2e2/h)`e/Lsyst

• Weak localization: G(E) = 2e2

h
`e

Lsyst
− δGWL

• Strong localization G(E) = 2e2

h
exp(−`e/Lsyst)

defining N(E) the conducting channels number, `e the elastic mean free path associated to a given

disorder model, and δGWL the weak localization correction to the quantum conductance. In Fig.2.1, one

shows an illustration of all those conduction mechanisms as well as the obtained conductance for the

ballistic case for a metallic (10,10) nanotube with or without Anderson type disorder (taken as random

fluctuations of onsite energies within an interval [−W/2,W/2]).

This approach was successfully applied to the study of quasiperiodic systems [10], quantum-Hall effect

[11], carbon nanotubes [12] and semiconducting nanowires [13]. Hereafter, we will show a quantitative

validation of the method by comparison with analytical results for a model Anderson-type disorder, and

further illustrate the quantitative predictability of the methods for studying quantum transport in realistic

models, such as chemically modified carbon nanotubes, effects of magnetic fields, or incommensurability

in multiwalled nanotubes. Finally, the essential steps for generalizing the approach to the Landauer-

Büttiker framework, essential for simulating nanoscale devices, will be drawn.

2.2.2 Elastic mean free path scaling properties in Carbon Nanotubes

For a in-depth understanding of disorder effects in low dimensional systems, the evaluation of the elastic

mean free path (`e) is a first fundamental step. For sufficiently weak disorder, a perturbative treatment

can be performed within the Fermi Golden Rule (FGR), giving a direct access to the elastic mean free path
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Figure 2.1: Top: time-dependent diffusion coefficient for various conduction regimes in metallic carbon nanotubes
(10,10) with or without elastic disorder (Anderson-type). Bottom: quantized energy dependent Kubo conductance
obtained for disorder-free nanotube.
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Figure 2.2: Main frame: Energy dependent mean free path as a function of diameter. Inset: 1/W 2-scaling in
agreement with Fermi golden rule. Adapted from [17].

`e = vF τ . In the context of disordered metallic carbon nanotubes [14, 15], an analytical result was first

derived by White and Todorov [16]. By reducing the bandstructure to a two-band approximation, and

describing the disorder by the onsite Anderson-type potential (see below), `e was analytically derived, and

found to linearly scale with diameter for a fixed disorder strength W , while at a fixed diameter (note that a

(n,m) nanotube has a diameter dt =
√

3acc

√
n2 +m2 + nm/π), the expected disorder scaling `e ∼ 1/W 2

was shown. The analytical derivation of such fundamental length scale requires the calculation of total

DoS in the vicinity of Fermi level. The DoS can be generally written as ρ(E) = Tr[δ(E −H)] where the

trace has to be developed over a complete basis set, while the application of the FGR yields

1

2τe(EF )
=

2π

~

∣

∣

∣

∣

〈Ψn1(kF )| Û |Ψn2(−kF )〉
∣

∣

∣

∣

2

ρ(EF ) ×NcNRing (2.1)

with Nc and NRing, the respective number of pair atoms along the circumference and the total number

of rings taken in the unit cell used for diagonalization, whereas the eigenstates at the Fermi level are

rewritten as

|Ψn1,n2(kF )〉 =
1

√

NRing

∑

m=1,NRing

eimkF |αn1,n2(m)〉 with

|αn1(m)〉 =
1√
2Nc

Nc
∑

n=1

e
2iπn
Nc

(

|pA
z (mn)〉 + |pB

z (mn)〉
)

|αn2(m)〉 =
1√
2Nc

Nc
∑

n=1

e
2iπn
Nc

(

|pA
z (mn)〉 − |pB

z (mn)〉
)

(2.2)
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while the disorder considered here is an uncorrelated white noise (Anderson-type) distribution given by

〈pA
z (mn) | Û | pA

z (m′n′)〉 = εA(m,n)δmm′δnn′

〈pB
z (mn) | Û | pb

z(m′n′)〉 = εB(m,n)δmm′δnn′

〈pA
z (mn) | Û | pA

z (m′n′)〉 = 0 (2.3)

where εB(m,n) and εA(m,n) are the onsite energies of electron at atoms A and B in position (m,n),

randomly distributed within the interval [−W/2,W/2] and following some uniform distribution with

probability P = 1/W . Then by replacing Eq.2.2 in Eq.2.1, using Eq.2.3, a straightforward calculation

gives :

1

τe(EF )
=
πρ(EF )

~

(

1
√

NcNRing

∑

NcNRing

ε2A +
1

√

NcNRing

∑

NcNRing

ε2B

)

Hence, if the disorder is described by random fluctuations of onsite energies with uniform probability

1/W (W the disorder bandwidth) the mean free path can be finally analytically [16, 18] derived as

`e =
18accγ

2
0

W 2

√

n2 +m2 + nm ∼
(

γ0

W

)2

dt

For the armchair m = n = 5 nanotube, with disorder W = 0.2γ0, applying the above equation, one

finds `e ∼ 560 nm which is much more larger than the circumference length. As shown in Fig. 2.2,

numerical studies [17] confirm the scaling law of the mean free path with the nanotube diameter close to

the charge neutrality point. For semiconducting bands, the 1/W 2 is still satisfied, but mean free paths are

seen to be much smaller and do not scale with diameter, in full agreement with experimental estimates

[19].

2.2.3 Weak localization and energy dependent coherence lengths

The understanding of localization effects in disordered mesoscopic systems stands as a central issue based

on the quantum interference effects (QIE) on charge transport [20, 21]. These QIE between clockwise

and counterclockwise backscattering paths develop in the so-called coherent regime, and yield an increase

of the return probability to the origin for propagating wavepackets. The contribution of QIE is usually

reduced by several inelastic scattering sources that produce decoherence of the wavepacket phase. At

low temperature the main decoherence mechanisms are e-ph and electron-electron couplings. Within the

framework of weak localization theory, it has been possible to derive perturbatively the relation between

the measured conductance G(E), its quantum correction δGWL(E) and the coherence length Lφ that

fixes the scale beyond which QIE are destroyed. The estimation of the coherence lengths is a central

issue in mesoscopic physics, and weak localization provides an elegant framework to extract the behavior

of Lφ, that mainly depends on the dimensionality of charge transport [9]. Stojetz and coworkers [19]

have recently succeeded in measuring the energy-dependence of the coherence length scale, by using

an efficient back-gate electrode able to move the Fermi level position and explore the physics through
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different subbands. The magnetoresistance data were well fitted by the conventional theory as [21]

δGWL = −A e2

π~L

(

1

L2
φ

+
W 2e2B2

3~2

)−1/2

, (2.4)

with L the tube length, W the diameter and A a normalization factor. From this expression, the

coherence length can be quantitatively extracted. Therefore, by using Lφ(T ) = (GDL~
2/2e2kB)1/3T−1/3,

the diffusivity was deduced D = 100cm2s−1 (at zero gate voltage) as well as the corresponding elastic

mean free path `e = 2D/vF ∼ 20nm. By reproducing this calculation at several values of the gate voltage,

a corresponding energy-dependent pattern was revealed. The spectacular observation was the systematic

decrease of Lφ (as well as `e) near the onsets of each new subbands (van-Hove singularities positions).

If the energy dependence of `e has been revealed numerically [12], the energy dependence of Lφ was to

date unexplored.

Finally, by studying the temperature dependence of Lφ, the decoherence mechanism was attributed to

electron-electron scattering, in agreement with conventional theory. Electron-electron and e-ph scattering

are two different sources of quantum dephasing, but within weak localization theory the resulting deco-

herence phenomenon is of similar nature, and for instance the derivation of the temperature dependent

coherence time follows some general formal treatment.

The energy dependence of the coherence length scaling properties in carbon nanotubes can be ana-

lyzed in the situation where e-ph interaction becomes the dominant source of decoherence. The phys-

ical origin of the coherence length can be simply understood as follows. First, weak localization cor-

rections are evaluated when computing the conductance for wavepacket propagation between two real

space positions, let us say from P to Q : G = 2e2

h PP→Q which can be further expanded as PP→Q =
∑

i |Ai|2 +
∑

i6=j AiAje
i(αi−αj), where the summation over probability amplitudes (denote Ai) includes

all possible electronic pathways i (see Fig.2.3 for illustration). Here one separates the total proba-

bility between the classical and interference parts. Then averaging over (elastic) disorder configura-

tions reduce the contribution of interference terms to a single class, namely the paths that include a

finite loop which return to some initial point, let’s say O, that can be further expressed analytically as

PO→O =
∣

∣

∣
A+e

iα+ + A−e+iα−

∣

∣

∣

2

= 4
∣

∣

∣
A0

∣

∣

∣

2

, since clockwise and counter clockwise probability amplitudes

have the same phase factor in case of time reversal invariance [22]. Weak localization thus results from

the enhancement (doubling) of the return probability to the origin, with a consequent increase of quan-

tum resistance. To understand decoherence, one must realize that when inelastic mechanisms come into

play on top of coherent transport, then clockwise and counterclockwise pathways accumulate a different

superimposed random phase factor eiα+ = 〈e+iφ〉 =
∫

dφP (φ)eiφ and eiα− = 〈e−iϕ〉 =
∫

dϕP (ϕ)e−iϕ,

respectively. These expressions are derived by considering that the coherent propagating wavepackets

is coupled to some external fluctuating potential, such as a thermal bath or fluctuating electromagnetic

field that respectively encode the e-ph and e-e interaction processes [22]. P (φ) denotes the probability

distribution function for the phase ϕ, that results from the combination of inelastic and elastic scattering

processes, both having a probabilistic nature along the electronic paths (Fig.2.3 (c) and (d)). Besides, if

u(r, t) defines the phonon displacement field, these phase factors are physically related to the Lagrangian
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Figure 2.3: (a) Representation of electronic propagating paths between two points P and Q (a); several paths
enclosing a loop returning back to some origin (b), with clockwise (-) and counterclockwise (+) parts; mechanism
of decoherence on those paths (arrow indicate inelastic scattering events occurring at different points for (+) and
(-) paths.

of the system, through its action along the electronic pathways, giving [22]

φ, ϕ =
mC

~

∫

v · (v · ∇)u(r, t) − 1

d
v2∇ · u(r, t)dt, (2.5)

defining mc the atom carbon mass; and d the space dimensionality, and r,v describing the position

and related velocity of the electronic pathways [22], while the summation is performed for an elapsed time

required to close the relevant loop. The coherence time τφ is the time beyond which a full uncertainty

of the phase difference is achieved between clockwise and counter clockwise paths (that is when the

width of the distribution P (ϕ) becomes in order of ∼ 2π) . Accordingly, the coherence length Lφ(E)

is the length associated with the loop that is closed after an elapsed time t = τφ. Finally, within

this phenomenology, the quantum correction of conductance is given by the relevant integrated return

probability to the origin: δGWL ∼ 2e2D
h

∫∞

0
PO→O(t)(e−t/τφ − e−t/τe), thus the quantitative measure

of conductance correction is driven by independent calculation of the return probability to the origin in

the coherent regime on one side, and estimation of the relevant coherence time on the other side. The

scaling properties of the quantum correction in the coherent regime can be investigated numerically by

solving the time-dependent Schrödinger equation (TDSE), whereas the coherence time will be given by the

considered total elapsed time, at which the TDSE is solved [23]. By doing so, the energy-dependence of the

weak localization pattern is correctly reproduced without however providing a quantitative information

about the exact value of the coherence length scales, neither their temperature dependences. This point

should be considered on the basis of a microscopical modeling of e-ph interaction and rigorous quantum

mechanical treatment of inelastic transport. The resolution of the TDSE can be made by expanding the

evolution operator e−iĤt as a product of short-time evolution steps e−iĤ∆T , for a total evolution time

t = n∆T . Typically ∆T is one tenth of the oscillation period of the considered phonon acoustic mode.
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Figure 2.4: Left panel: Conductance for the disordered (10,10) tube with W = 0.07γ0, taken at evolution
times t = 3500~/γ0 and t = 35000~/γ0 (dashed curves). The bold curve gives the classical part Gclass(E) =
G0N⊥`e(E)/L(E, t), whereas the dotted curve gives the quantum correction δGWL(E) (t = 35000~/γ0). Right
panel: Coherence lengths deduced from δGWL(E) = Lφ(E)/L(E) computed at t = 35000~/γ0, and for several
values of disorder potential. Inset: Corresponding τφ(E) for the same parameters. In addition to the random
short range disorder, a twist acoustic-mode modulation is introduced.

During each elapsed time ∆T , the hamiltonian energetics is fixed by the static part of the Anderson

potential, whereas the time-dependent part, due to long range vibrational modes, varies in conjunction

with the associated overlap integrals modulations [23].

To extract the energy-dependence of the coherence length scale, we proceed as follows. In the weak

localization regime, the quantum correction of the Drude conductance is computed by solving the so-

called Cooperon equation [21]. Assuming a quasi-1D geometry of the system, it has been shown that

decoherence either due to e-ph or electron-electron scattering is described within the same scheme, and

that the conductance reads GKubo(E) = 2e2

h

(

N⊥(E) `e(E)
L(E,t) −δGWL(E)

)

where L(E, t) is the length scale

that is energy-dependent due to velocity v(E), and scales as L(E, t) =
√

v(E)`et, in the diffusive regime,

whereas the term δGWL(E) gives the contribution of QIE beyond the scale of `e. Within the weak

localization theory, and for quasi-1D systems, this contribution is shown to be related to the coherence

length Lφ(E) as δGWL(E) = Lφ(E)/L(E, t) whereas τφ(E) = L2
φ(E)/v(E)`e. Therefore, by exploring

the scaling behavior of δGWL(E), one can access relevant physical information about the fluctuations of

the coherence length scales in the weak localization regime [23].

Fig. 2.4(left panel) shows the conductance computed at two different evolution times, t = 3500~/γ0

and t = 35000~/γ0 ' 8ps (dashed curves). One clearly sees a downscaling of the conductance with

time, that comes from the classical linear downsizing in the diffusive regime `e(E)/L(E, t), together with

the increasing QIE contribution of δGWL(E, t) with time (or equivalently length) scale. In the same

figure, one also reports the classical term Gclass(E) = N⊥(E)G0`e(E)/L(E, t)(bold curve), along with

the quantum interference term δGWL(E, t) = GKubo(E, t) −Gclass(E) (dotted curve), at t = 35000~/γ0.
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These results are obtained for W = 0.07γ0 and no phonon dephasing, and by adding the time dependence

modulations of integral overlap associated to the TW mode does not bring any appreciable changes [23].

Fig. 2.4 (right panel) gives Lφ(E) (main frame) and τφ(E) (inset) for

W = {0.1γ0, 0.2γ0, 0.5γ0} (bold, dotted and dashed curves respectively). The values range within

[10nm, 1000nm] in the considered energy window. One notes that for energies ≤ 0.9eV and within the

considered evolution time, the quantum correction δG(E) ' 0, so that no meaningful information about

the coherence length can be deduced since transport remains quasi-ballistic. In contrast, the coherence

time shows reversed behavior, owing to the strong decrease of `e.

In the experimental situation [19], the fluctuation of Lφ(E) due to electron-electron scattering were

found to scan the range [10nm, 60nm], with systematic decrease near the onsets of new subbands. The

values given here (for the chosen evolution time) are thus physically reasonable, since e-ph scattering is

expected to lead to weaker decoherence effect [22].

2.2.4 Weak localization regimes and magnetic fields effects

Hereafter the weak localization phenomena in metallic carbon nanotubes are illustrated, on the basis of

numerical results [24]. We first discuss for the metallic (9, 0) nanotube, the various transport regimes

under magnetic field. In Fig.2.5, the behavior of the field-dependent diffusion coefficients are shown in

regards to the value of `e, that is modulated following its analytical relation to disorder strength W .

Indeed, by using the Anderson-type disorder, the value of `e can thus be tuned by the disorder strength

W , and the several cases of interest can be explored.

First, the weak localization regime [21] is analyzed under the condition `e < |Ch| < L(τφ). Fig. 2.5

shows that the diffusivity increases at low fields (negative magnetoresistance) and that the periodic

Aharonov-Bohm oscillations are dominated by a φ0/2 period, i.e., D(τφ, φ+φ0/2) = D(τφ, φ) in agreement

with weak localization theory. In contrast, when `e > |Ch|, L(τφ < 2`e), the system exhibits a positive

magnetoresistance associated with D(τφ, φ+φ0) = D(τφ, φ). For the case `e > |Ch|, L(τφ > 2`e), negative

magnetoresistance and Aharonov-Bohm oscillations with period φ0 are obtained. Note that with the

analytical formula for the mean free path and estimates of disorder values, one gets `e ' 104 × |Ch|, by

using |Ch| as the circumference of the outer nanotube in the experiment of Bachtold and coworkers [25].

This leads to some inconsistency since the theoretical value of the mean free path is a priori too large to

be consistent with a φ0/2 Aharonov-Bohm oscillation. Although the bandgap opening and oscillations,

as well as other bandstructure changes (van-Hove singularities splitting and shifting) are likely to be

smoothen by disorder, the magnetofingerprints will obviously result from a entangled situation, that

goes much beyond the conventional theory of weak localization [24]. Several early experiments suggested

such additional complexity in analyzing magnetotransport measurements [26, 27]. Roche and Saito

[12] theoretically found that for a fixed disorder strength, magnetotransport fingerprints present strong

fluctuations as a function of Fermi level position, CNT diameter, and orientation of the magnetic field with

respect to the tube axis. Thanks to the engineering of efficient electrostatic gating of the nanotube, some

experimental evidence of such multiple Aharonov-Bohm effects, with a φ0/2 oscillation driven by weak
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Figure 2.5: Diffusion coefficient D(τφ, φ/φ0) (in units of Å2-γ0/~) for the (9,0) nanotube evaluated at time τφ � τe,
for two disorder strengths, W/γ0 = 3 and 1, such that the mean free path (`e ∼ 0.5 and 3 nm, respectively) is
either shorter (dashed line) or larger (solid line) than the nanotube circumference (|Ch| ∼ 2.3 nm). The right y-axis
is for the dashed line and the left y-axis is for the solid line. Inset: D(τφ, φ/φ0) for `e = 3 nm and L(τφ) < 2`e.

localization, superimposed to φ0-periodic resistance fluctuations related to bandstructure modulations

have been reported [28].

2.2.5 Quantum Transport and localization effects in chemically doped nan-

otubes

The possibility to incorporate chemical impurities as substitutions of carbon atoms has been demonstrated

experimentally [29] and offers novel possibilities to investigate coherent charge transport, and magnetore-

sistance phenomena in chemically modified carbon nanotubes. Substitutional doping by nitrogen or boron

impurities has been a very intense research topic at the theoretical level during the recent years [30, 31].

Initial works focused on the effect of a single isolated defect on electronic and transport properties, while

further studies have addressed the issue of mesoscopic transport in µms long nanotubes with random

distributions of impurities. These transport methods are mainly based on Kubo or Landauer-Büttiker

frameworks, and mostly employed ab initio calculations combined with semi-empirical π−π∗ hamiltonian

[32, 33, 34]. Such studies have allowed to explore the fundamental elastic transport length scales (elastic

mean free path `e(E)), and to investigate quantum interferences phenomena bringing the system from

the weak to the strong localization regime.

To elaborate an effective tight-binding model able to describe the physics around the Fermi level,

it is sufficient to properly describe the long-range scattering potential due to the chemical impurities

(assuming low density approximation, i.e. no possible interferences between tails of individual impurity

potentials). The long-range variations of the on-site and hopping parameters around impurities can be
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Figure 2.6: Top: representation of a single adsorbed potassium atom on a CNT connected in between two metal
contacts. Bottom: long-range variations of the on-site and hopping parameters around K and N impurities derived
from ab initio calculations [32].

directly derived from ab initio calculations performed using atomic-like basis [32]. The obtained tight-

binding parameters allow to reproduce the position of the quasibound states in perfect agreement with

the ab initio calculation [30]. As a matter of illustration, in Fig.6.35 the evolution of the ab initio on-site

hamiltonian matrix elements associated with the pz orbitals (perpendicular to the plane of atoms) as a

function of the distance to the impurity in a doped (12 × 12) graphene sheet [32]. The potential well

created by N in substitution is clearly much deeper that the one associated with the partially screened K+

ion. In particular, the ability of adsorbed K ions to trap electrons is significantly reduced as compared

to N impurities.

In Fig.6.32, the Landauer conductance computed from the ab-initio method (left) and the tight-

binding model for a single nitrogen doped (10, 10) armchair nanotube are shown (right-inset). At selected

energies (left inset:arrows), the conductance scaling properties are shown for a fixed impurity density

ndoping = 0.1% (main frame). The extraction of the elastic mean free path `e is achieved by adding the

contribution of the ballistic term to the diffusive one, i.e. R = 1/G = R0/N⊥+R0/(N⊥Ltube/`e), where

R0 = h/2e2 is the resistance quantum and N⊥ the number of available transverse modes at a given energy.

When `e/Ltube � 1, the statistical distribution of T is found to be narrowed and centred around N⊥,

in agreement with a ballistic limit G = G0N⊥, with G0 = 1/R0 the conductance quantum. The other

asymptotic case is found when `e/Ltube � 1, where the distribution of T becomes wider with a mean

value downscaling with the tube length as T (E) = N⊥(E)`e(E)/Ltube. The conductance downscaling at

a given energy exhibits a crossover from a ballistic to a diffusive regime.

Fig.2.8 shows the full energy-dependence of the elastic mean free path (`e), evaluated from the Kubo
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Figure 2.7: Left: Ab-initio calculation of the conductance for a single nitrogen impurity in substitution of one
carbon atom in the (6,6) metallic nanotube [32]. Right: Length-dependence of the Landauer conductance for the
disordered (10,10) nitrogen doped nanotube at several energies (doping is fixed to 0.1%). Inset: Conductance
versus energy for the perfect (dashed line) and single-impurity (solid line) cases for a single defect. Arrows show
the considered energies for the scaling analysis (main frame) [34].

Figure 2.8: Main frame: `e for several values of ndoping (from lower to upper curve: 0.3%, 0.2%, 0.1%, 0.05%).
Inset(top): T at CNP, for an average over 200 configurations(ndoping = 0.1%). The linear fit (dashed) directly
gives `e. Inset(bottom): ln T at E = 0.69eV, with linear fit (dashed) giving access to ξ(ndoping = 0.1%).
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formula, for several values of the doping density. It is readily shown that over the whole spectral window

`e ∼ 1/ndoping which is expected from the FGR. At charge neutrality point, the scaling of `e shows

a linear increase with the radius of the tube r as found in a simpler Anderson model of disorder (not

shown here). The comparison between `e extracted from both the Kubo and the Landauer formalism

are in very good agreement over the full spectrum at a quantitative level [34]. For instance, the top

inset of Fig.2 shows the averaged transmission as well as the fitting curve 2/(1 + Ltube/`e(E)), that

yields `e(E = 0.00) = 495.5 ± 17.4nm in excellent agreement with the Kubo calculation that gives

≈ 460nm. For an energy at the frontier of the first subband below the CNP, i.e. E = −0.78eV (Fig.1-a),

the conductance slowly decays with length, and the regime remains quasiballistic. This is consistent

with the calculated mean free path `e(E = −0.78) = 8371.6 ± 69.4nm which is much larger than the

maximum length (Ltube = 3000nm) of the tube in between contact probes. For energies close to the

nitrogen quasibound states (Fig.6.32), the impurity-induced backscattering becomes very strong, yielding

a very small mean free path (see also Fig.2.8). On the “s wave” resonance, one actually finds that

`e(E = 0.69) = 8.2 ± 0.8nm. For length larger than the mean free path, the conductance becomes

exponentially reduced with length (Fig.6.35, curves c and d), defining a localized regime with ξ the length

scale that quantifies the exponential decay of exp (lnT ) [20]. Accordingly, one gets lnT (E) = −L/ξ(E)

[34].

2.2.6 Incommensurability and anomalous quantum transport in multiwalled

carbon nanotubes

Thanks to the order N calculation, we were able to establish a deep connection between spectral and

dynamical properties of incommensurate multi-walled nanotubes (MWNTs) [24, 35]. The MWNTs are

indeed mostly intrinsic incommensurate objects since, due to registry mismatch between neighboring

shells, there are very few cases in which the respective symmetries of individual shells allow a common unit

cell for the whole object. In most situations, the unit cell length (along the nanotube axis) ratio between

adjacent shells is an irrational number, and the MWNT taken as a whole becomes an incommensurate

object.

The study of energy dependent diffusion coefficients in micron long multiwalled carbon nanotubes

with intrinsic incommensurability between neighboring shells, demonstrates that the conduction regime

evolves from sub-ballistic to diffusive motion as the Fermi level moves to subbands regions of large density

of states, as a consequence of enhanced contribution of the underlying aperiodic potential and multiple

scattering phenomena.

In incommensurate systems, such as the (6, 4)@(17, 0)@(15, 15) triple wall nanotube, the energy-

dependent anomalous conduction due to geometrical incommensurability-induced aperiodic potential

is particularly strong. The region around the charge neutrality point remains almost ballistic, as ex-

pected from the suppression of the intershell coupling at low energies due to helicity-determined selection

rules [36]. In contrast, the rest of the electronic spectrum shows a very slow expansion of the wave packet

in time. In Fig. 2.9 ones shows the time-dependent evolution of the diffusion coefficient (left) together
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Figure 2.9: Left: time dependent diffusion coefficient for incommensurate/commensurate disorder-free MWNTs
(with β = γ0/8). Right: length dependence of conductance for two Fermi energies for (6, 4)@(17, 0)@(15, 15).
Adapted from Triozon:PRB04

with the length dependence of the Kubo conductance (right) by defining the diffusion coefficient as

D(E, t) =
X2(E, t)

t
=

trδ(E − Ĥ)(X̂ (t) − X̂ (0))2

trδ(E − Ĥ) t
.

D(E, t) either shows anomalously slow diffusion, or saturates at long times. Whenever the saturation

limit is reached, a mean free path `e(E) for the whole object can be meaningfully extracted. The

possibility to get anomalous diffusion and elastic mean free path intrinsically associated to an aperiodic

potential of an otherwise clean system stands a unprecedented feature in Condensed Matter Physics. In

contrast to quasiperiodic systems as model systems for quasicrystals [10, 37, 38], the simplified tight-

binding description in MWNTs correctly reproduce the electronic bandstructure of real nanotubes, so a

quantitative comparison between theory and experiments is possible! Despite recent efforts, the unique

transport properties of MWNTs predicted theoretically remain to be experimentally confirmed.

2.3 Bi-orthogonalization process and Landauer-Büttiker con-

ductance calculation

We have also developed a similar order N method for the calculation of Landauer-Büttiker conductance

[39] in quasi-1D materials. This formula has the advantages to be general, independent of the geometrical
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complexity of the system. In contrast to decimation-type approaches, this computational scheme allows

order N in the direction perpendicular to the transport direction.

In brief, to express an analytical form for the conductance of the system under study, it is convenient

to dissociate it from the two metallic external electrodes that serve to inject current in and out of the

system, and that allow to suitably assume a well-given form for incoming and outgoing scattering states.

These electrodes are further connected to measurement reservoirs, in which energy dissipation finally

takes place.

We have shown that the problem can be reduced to the evaluation of 〈ψ|Gr|ψ〉, where |ψ〉 is a normal-

ized state. To implement the recursion approach in the Landauer framework [40], a generalization to the

case of non-symmetric matrices was performed. Indeed, the effective appearing in the Green’s function

is here non-symmetric hamiltonian H = HSys + Σr
L + Σr

R because of the presence of self-energy matrix

elements (Σr
L,R) describing the finite system coupled to the electrodes. A generalization of the recursion

method to the computation of electronic spectra of non-symmetric hamiltonian was unsuccessfully pro-

posed [41], but its further implementation received little consideration until the work of C. Benoit et al.,

who applied a similar approach in a totally different context [42]. As we could demonstrate in [39], the

bi-orthogonalization process can be efficiently implemented to the Landauer- Büttiker formalism, which

yields a stable, efficient novel computing tool for nanoelectronics. The scheme has corrected the initial

errors made in [41]. The basis equations are as follows: starting from the normalized vector |ψ〉 and from

the non-hermitian matrix H, we construct a bi-orthogonal basis {|ψn〉, 〈φn|} defined as follows

|ψn+1〉 = H|ψn〉 − an+1|ψn〉 − bn|ψn−1〉 (2.6)

〈φn+1| = 〈φn|H − 〈φn|an+1 − 〈φn−1|bn (2.7)

with the initial conditions |ψ−1〉 = |φ−1〉 = 0, |ψ0〉 = |φ0〉 = |ψ〉, and the bi-orthogonality condition

〈φn|ψm〉 = 0 if n 6= m. This last condition is equivalent to the following relations for an and bn:

an =
〈φn|H|ψn〉
〈φn|ψn〉

(2.8)

bn =
〈φn−1|H|ψn〉
〈φn−1|ψn−1〉

=
〈φn|ψn〉

〈φn−1|ψn−1〉
. (2.9)

The four equations (2.6), (2.7), (2.8), and (2.9) allow a recursive determination of the bi-orthogonal

basis and of the coefficients an, bn. Note that in ”ket” notation, Eq. (2.7) must be understood as:

|φn+1〉 = H†|φn〉 − a∗n+1|φn〉 − b∗n|φn−1〉. One starts from |φ0〉 = |ψ0〉 = |ψ〉. At step 0, one computes

H|ψ0〉 and a1 = 〈φ0|H|ψ0〉/〈φ0|ψ0〉 by expanding all the amplitudes within the tight-binding localized

basis. |ψ1〉 and |φ1〉 are then obtained by computing H|ψ0〉 − a1|ψ0〉 and H†|φ0〉 − a∗1|φ0〉, while the

first coefficient b1 is subsequently deduced from Eq. (2.9). At step 1, H|ψ1〉 is computed together with

a2 = 〈φ1|Ĥ|ψ1〉/〈φ1|ψ1〉. Then |ψ2〉 and |φ2〉 result from the computation of vectors H|ψ1〉−a2|ψ1〉−b1|ψ0〉
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and H†|φ1〉 − a∗2|φ1〉 − b∗1|φ0〉. Finally, the coefficient b2 is then deduced from Eq. (2.9). Steps n ≥ 2 are

fully similar to step 1. In the basis {|ψn〉}, H has thus a tridiagonal form:

H =



















a1 b1

1 a2 b2

1 a3 b3

1 . .

. .



















. (2.10)

Hence the recurrence relations (2.6) and (2.7) lead to a non-symmetric matrix and to a non-normalized

bi-orthogonal basis. By choosing a different convention, a symmetric tridiagonal matrix and/or a normal-

ized basis could be obtained. The quantity 〈ψ|Gr(z = E ± 0+)|ψ〉 = 〈φ0| 1
z−H |ψ0〉 can then be computed

by the continued fraction method. It is equal to the first diagonal element of (z − H)−1 where H is

the tridiagonal matrix (2.10). Let us call G0(z) this matrix element and define Gn(z), the first diagonal

element of the matrix (z −Hn)−1, with Hn the matrix H without its n first lines and columns:

Hn =



















an bn

1 an+1 bn+1

1 an+2 bn+2

1 . .

. .



















. (2.11)

From standard linear algebra, it can be shown that

G0(z) =
1

z − a1 − b1G1(z)
, (2.12)

and replicating such algorithm one gets a continued-fraction of G0(z) :

G0(z) =
1

z − a1 − b1

z − a2 −
b2
...

(2.13)

In contrast with the standard recursion method, the recursion coefficients an and bn do not show any

simple behaviour for large n. In the type of applications considered here, a simple truncation of the

continuous fraction at sufficiently large n gave a good convergence. This method was tested on carbon

nanotube based heterojunctions [39], with perfect agreement with more traditional decimation techniques

[43].
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2.4 Conclusion

In conclusion, we have presented novel methodologies that can provide to scientific community efficient

and optimized order N schemes, for deepening basic transport length scales in complex materials and

nanodevices. Current efforts are devoted to extend the possibilities to situations far from the equilibrium,

which stands as a great challenge; this include simulating nanodevices submitted to large bias voltages,

and dissipation effects within the conducting channels such as those driven by electron-phonon interactions

[44].
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3.1 Introduction

For about twenty years, more and more new materials have been virtually studied in computers, and no

more as traditionally using an empirical approach based on successive fittings or lucky hazards. Such

a remarkable rise of the numerical simulations is probably due to the conjunction of two facts : the

emergence of new theories and methodologies allowing predictive simulations on realistic systems, on one

hand, and the incredible increase of the computer power, on the other hand. Physicists may calculate a

priori the properties of a material which exists or not, creating a new domain of physics, the numerical-

simulation experiment. Many successes validated such an approach which illuminates in a complementary

way the properties of matter and leads to a highest understanding of the physical mechanisms brought into

play. The development of new scientific fields or research directions at the frontier of various scientific

disciplines often needs to be linked to intensive numerical simulations. For example, the initiatives

launched by several countries in nanosciences include a strong component in numerical simulations.

3.2 Brief outline of the techniques

Among the various numerical techniques used to predict the electronic structure, those based on the

density functional theory (DFT) [1, 2] are becoming more and more popular in physics and quantum
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chemistry. Although starting from quantum mechanics first-principles, these methods allow the study

of atomic systems containing a quite important number of atoms (a few hundreds) with reasonable

computational means. Our group has been using this technique during several years to investigate the

electronic structures of various graphites and other carbon nanostructures (nanotubes, fullerenes, hybrid

systems based on nanotubes,...) [3].

In the framework of this project, we would like to help the experimentalists in their quest to cre-

ate atomic or molecular systems which are able to transfer an information at the nanoscale. Presently,

several groups around the world are able to integrate into electronic devices molecular systems such

as benzenedithiol, nanowires, nanotubes and graphene nanoribbons, and to measure their corresponding

current-voltage (I/V) characteristics. This new field of research has generated a considerable experimental

activity and has raised several theoretical challenges to understand and model electronic quantum trans-

port. Moreover, during the last years, our theoretical works have mainly focused on quantum transport

using the Kubo-Greenwood formalism in real space [4] and semi-empirical approaches (tight-binding). In

such a framework, the phenomena associated to the reduced dimensionality, to the quantum confinement,

and to the loss of phase coherency due to defects, impurities or other aperiodic perturbations, can easily

be investigated. In addition, this formalism illustrates specifically the link between the conductivity and

the quantum diffusion whose value is directly connected to the average quadratic spreading of a wave-

packet which diffuses inside the nanostructure. The conductivity at zero temperature can be deduced

from the time evolution of this variable, as well as the conduction regime (ballistic, diffusive or localized).

More specifically, we have been using this formalism to investigate the quantum transport in nanotubes

with a perfect structure, doped in substitution [5] and randomly decorated with organic molecules [6].

However, these semi-empirical simulations do not allow for accurate structural relaxations to be

performed and do not yield correct values for the local electronic charges in the studied systems. In other

words, the chemical potential is not uniform across the entire system in equilibrium. For these reasons, it

is appropriate to generalize these development on quantum transport to pure ab initio formalisms which

guarantee the uniformity of the chemical potential (at least at a mean field level). Consequently, it is

quite reasonable to turn to the DFT which was so successful in many applications in condensed matter.

However, in a transport experiment, the system is out of equilibrium. The difficulties to use the DFT

in quantum transport are due to the fact that this theory and mostly its approximations (by way of the

functionals) are only well established for electronic systems in their ground state, at the equilibrium,

and when the properties are not dependent on the electronic correlations. If the DFT is the undeniable

technique used today to predict the ground state properties of realistic materials, the state-of-the-art for

the excited sates is not fixed. Different communities are using various approaches to treat this problem

: TDDFT (Time Dependent DFT), GW (many-body Green functions), DMFT (Dynamical Mean Field

Theory),

The Landauer-Büttiker formalism [7] supplies a simple framework to describe electronic quantum

transport in nanostructures. In particular, the central equation of this theory connects the quantum

conductance G(E) = 2e2

h T (E) to the transmission function T (E). The value of this electronic transmis-

sion is essentially determined by the region where the number of channels available for conduction is the
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smallest. In nanotechnology, the region of relevance is the nanostructure itself forming the nanoscopic

bridge between the metallic electrodes. The electronic transmission is thus strongly dependent on the

particular nanostructure, the detailed atomic arrangement of the electrodes in the contact region, and

their chemical nature.

Figure 3.1: Quantum transport : modelisation of the contacts between a carbon nanostructure.

The modern theory of quantum transport gave rise to several methods to accurately calculate this

transmission function whose estimation implies the good knowledge of the electronic structure of the

nanoscopic system. These numerical simulations of transport experiments induce an open system when

considering the nanostructure alone, or an infinite system constituted by the nanostructure and two

semi-infinite electrodes which can be a prolongation of the ideal nanostructure or real metallic contacts.

The electronic states of these bridged nanosystems are described by scattering states which extend over

the whole region between two semi-infinite electrodes.

In a first approach, the Lippmann-Schwinger equation [8] is solved in order to obtain accurate scat-

tering states in a plane-wave expansion or in real-space grids under finite bias voltages. However, the

dimension of the matrix to be solved becomes so large as the system size increases that it is difficult to

apply the method to large systems.

The Keldysh formalism [8], based on the integration of the non-equilibrium Green functions (NEGF)

inside the DFT, is playing a key role. This approach consists in using the DFT to approximately describe

the electronic structure of quasi-particles in nanostructures, in order to use these data as an input in

the Landauer-Büttiker formalism to simulate the linear response in the limit of small differences of

potential. In this framework, the investigated system is also divided into a diffusion region surrounded

by two electrodes, and the conductance is expressed in terms of Green functions. In principle, in such

a formalism, the non-equilibrium conduction regime, the effect of the contacts, the presence of an open

system, and the effects of correlation (e-e interaction and e-phonon interaction) can be taken into account.

The main problem is that NEGF is a complex theory which allows only to treat simple systems or small

models. Presently, a calculation performed in the framework of the NEGF on todays computers is still a

real challenge.
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3.3 Challenges

In this project, we intend to use the NEGF formalism as implemented in the SIESTA [9] – SMEAGOL [10]

and the ABINIT [11] – WANT [12] codes to investigate quantum transport. Both SIESTA and ABINIT

are ab initio codes for the simulation of ground-state properties. SIESTA (localized-orbitals basis set,

[9]), although inherently less accurate than ABINIT (plane-waves basis set, [11]), is able to treat a larger

number of atoms. Moreover, two softwares specialized for the study of transport properties, named

SMEAGOL [10] and WANT [12], are interfaced with SIESTA and ABINIT, respectively. The quantum

transport properties will be investigated using these codes in various carbon nanostructures such as

carbon nanotubes and graphene nanoribbons.

3.4 Opportunities for applications relevant in nanosciences

Their unusual electronic and structural physical properties promote carbon nanomaterials as promis-

ing candidates for a wide range of nanoscience and nanotechnology applications. Carbon is unique in

possessing allotropes of each possible dimensionality and, thus, has the potential versatility of mate-

rials exhibiting different physical and chemical properties. Diamond (3D), fullerenes (0D), nanotubes

(1D-CNTs), and 2D graphite platelets and graphene ribbons are selected examples. Because of their

remarkable electronic properties, CNTs are expected to play an important role in the future of nanoscale

electronics. Not only can nanotubes be metallic, but they are mechanically very stable and strong, and

their carrier mobility is equivalent to that of good metals, suggesting that they would make ideal intercon-

nects in nanosized devices. Further, the intrinsic semiconducting character of other tubes, as controlled

by their topology, allows us to build logic devices at the nanometer scale, as already demonstrated in

many laboratories.

However, like in most materials, the presence of defects in carbon nanotube has been demonstrated

experimentally [13, 14] and alter this ideal situation. These atomic-scale defects may take different forms

: vacancy, di-vacancy, “Stone-Wales” defect, adatom, heptagon/pentagon pair, atom in substitution,

Those defects can appear at the stage of CNT growth and purification, or be deliberately created by

irradiation, chemical treatment, or induced by uniderectional strains in order to achieve a desired func-

tionality. They are known to drastically modify both the electronic and the transport properties of

carbon nanotubes [15]. The presence of defects has thus become an essential part of diverse processes in

carbon materials synthesis. A true realization of different devices requires a good understanding of both

geometrical and electronic properties of not only the carbon nanostructures themselves, but also of their

defects. For instance, structural and electronic properties of carbon nanomaterials could be tuned by

such a presence in their structures. It was reported that vacancy defects created by electron irradiations

could induce structural changes within carbon nanotubes. Moreover, vacancies induced the occurrence of

magnetism which could be useful in some specific applications. Consequently, it is crucial to understand

the properties of these defects in order to conquer their detrimental effects, but also because controlled

defect introduction may be used to tune nanotube properties in a desired direction.
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Figure 3.2: Defects in carbon nanotubes

Recently, the modifications induced by those defects in the electronic properties of the carbon hexag-

onal network have been investigated using first-principles calculations. Computed constant-current STM

images of these defects have been calculated within a tight-binding approach in order to facilitate the

interpretation of STM images of defected carbon nanostructures [16]. In addition, most of these topolog-

ical defects induce localized non-dispersive electronic states close to the Fermi energy, thus modifying the

intrinsic electronic properties of the carbon nanostructures. As these defects should also play a key role

on the transport properties, the quantum conductance will be calculated for various topological defects

incorporated in carbon nanotubes.

Due to the nano size of the systems under investigation, atomistic simulations become necessary for an

accurate modelling of their transport properties. Indeed, effective bulk parameters cannot be used for the

description of the electronic states since interfacial properties play a crucial role and semiclassical methods

for transport calculations are not suitable at the typical scales where the device behavior is characterized

by coherent tunnelling. Consequently, quantum-mechanical computations with atomic resolution can be

achieved using localized basis sets for the description of the system Hamiltonian and can predict electronic

and transport properties of nanostructures. In the present project, the structural and electronic properties

of CNTs will be obtained via the ab initio method as implemented in the SIESTA code [9] while the

quantum conductance of the system is achieved from electronic transport calculations performed with the

SMEAGOL code [10]. The latter is based on the non-equilibrium Greens function (NEGF) formalism and

uses the one-particle Hamiltonian obtained from the DFT calculations. Such approach, which combines

NEGF and DFT, allows us to model real systems constituted by hundreds of atoms to a high degree of

accuracy as mentioned in the previous section.

At last, among the different possible applications of CNTs, the present project will also focus on their

use as nanosensors for gas detection thanks to the change in conductance of the nanodevice in presence of

the gas to be detected. To reach this goal, the enhanced chemical reactivity of defected carbon nanotubes

or tubes decorated with metal clusters will be investigated by predicting the modulation of the quantum

conductance due to specific molecules adsorbed at the defect site in order to evaluate their potential

sensing properties.

The field of nanotubes has further fostered much interest in related systems such as graphite platelets

and graphene nanostcutures. The actual synthesis of isolated graphene sheets, or few layers graphite
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materials [17] and the sudden interest generated by such a synthesis, comes nearly 15 years after that

of nanotubes. This is an amazing twist of history as the properties of nanotubes are usually derived

from that of graphene [3]. As in a such system the electrons are confined in 2D, the quantum transport

properties of these nanostructures, measured experimentally under magnetic field, revealing a surprising

and non-conventional physics due to the unique low-dimensionality of this material [18, 21]. Charge

carriers around the charge neutrality point in graphene show a very high mobility with a Dirac-like

behaviour, namely an energy-independent velocity [19, 20, 22, 23]. Indeed, in contrast with bulk graphite

which is a 3D semimetal whose density of charge carriers strongly depends on the stacking of the its

planes [24], the graphene sheet (or a few graphene layers) represents a semiconductor with a zero gap

(or very small gap or semimetals with a very low density of charge carriers) [25]. In the case of graphene

nanoribbons, confinement effects induce a width and orientation-dependent band-gap opening [26] and

one is back to the size and helicity selection that complicates the use of nanotubes in applications. Other

interesting properties, such as a half-metal behaviour, where spin-up and spin-down electrons display a

different metallicity, have also been proposed [27].

Figure 3.3: Spintronics in graphene nanoribbons, from Ref. [27].

The second part of the project will consist the quatum transport in the graphene sheet and in graphene

nanoribbons where the electrons are confined in 2D. Our group plan to study electronic devices based

on these graphene nanoribbons, connected to metallic electrodes in order to predict their electronic and

transport properties. In this research, the first-principles simulations will mainly focus on the surface

reconstruction of the graphene nanoribbon (with or without hydrogen) and also on the metallic contact

- graphene sheet interface. The I/V characteristics will be predicted ab initio for several model systems.
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4.1 Introduction

Scaling of semiconductor devices has led to prototype field effect transistors with gate lengths of only a

few nanometers. The persistent scaling down of transistor sizes has continued to enable more powerful

microprocessors, this in turn allows for simulations of longer length and time scales. It is now possible

to routinely solve the Schrödinger equation or the equations of density functional theory for several

hundred atoms, and in many cases, thousands of atoms. Hence very accurate atomic scale calculations

can be applied to the design of the very technologies enabling the simulations. However, even for “small”

semiconductor devices, atoms can easily number into the several million, and it is desirable to be able

to treat larger atomic systems with less accurate- but with the advantage of being orders of magnitude

computationally less demanding compared to first principles methods- simulations.

Forcefield, empirical, atomistic, interatomic potential, analytical potential, model potential, and

molecular mechanics are a few of the names given to atomic scale simulations whereby the complex

interactions governed by the quantum mechanics of many-electron systems are replaced with effective

interatomic potential energies. The inter-atomic potential energies (and their derivatives with respect

to nuclear positions, the forces) are represented by simple analytical functions used to describe, in an

approximate way, atomic interactions within solids, liquids and gases.

This survey considers interatomic potentials that can be used for modeling semiconductors and insu-
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lators, the materials at the heart of modern metal-oxide-semiconductor (MOS) transistors. For semicon-

ductor materials, the focus of this review is on silicon and germanium, and their alloys SixGe1−x. Several

crystalline polymorphs of silicon dioxide are considered. Various interatomic potentials are discussed,

and their suitability for describing specific material properties is summarized.

In simulating or modelling materials on an atomic level, it is required to determine the positions

and movement of all the atoms comprising a material sample. Solving Schrödinger’s equation delivers

an answer to this problem in principle. However, solution of these equations for macroscopic materials

is intractable and even for nanoscale systems, a quantum mechanical treatment of both the nuclear

and electronic motion remains a demanding computational challenge. For advanced electronic structure

calculations, the electronic and nuclear motions are decoupled, and the electronic degrees of freedom

are treated by accurate quantum mechanical methods, whereas the nuclear motion (i.e. the “atomic”

positions) is treated as the classical mechanics of point particles moving in a potential energy field

determined by the electronic degrees of freedom and the nuclear-nuclear Coulomb interactions.

Molecular dynamics is a semi-classical scheme whereby the complex quantum mechanical interactions

between atoms are represented by simple analytical expressions, but the motions of atoms are governed

by classical mechanics. This semi-classical approximation certainly has its limitations, but has proven to

be very successful in predicting structural, thermodynamic and mechanical properties of materials. The

interaction potentials between atoms may be thought of as effective potentials averaging over the detailed

electronic structure of the materials, hence the method is not suitable for determining detailed electronic

and optical properties of materials.

There are many detailed and interesting overviews of molecular dynamics and molecular mechanics

methods and applications. In this chapter the focus is on the evaluation of analytical potential energy

functions (henceforth refererred to as “analytical potentials”, or simply as “potentials”) in use to describe

materials of great importance to electronic device technologies: silicon, germanium, silicon germanium

alloys, and silicon dioxide. The purpose of this survey is to give an overview of the strengths of analytical

potential methods, to give and indication of where these methods fail, and to indicate areas for further

research. The survey is not exhaustive, but a wide range of potential functions and their applications are

considered.

4.2 Analytical potential energy functions

Molecular dynamics simulates the position and forces on individual atoms by integrating Newton’s equa-

tions for atomic positions with forces derived from analytical potential functions chosen to model the

Born-Oppenheimer energy surface. Structures and material specific properties can be computed from

the procedure resulting in structures and many, but not all, material properties. The potential energy

functions are based on simplified, but quantum-mechanically motivated, models. The primary aim in

developing an analytical potential function is to produce an approximation that enables a set of specific

properties to be reproduced over a wide range of conditions; for example, for varying temperature and

pressure. Ideally the analytical potential will be able to reproduce many material properties such as
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viscosity and mechanical strength, and be able to treat all structural phases of a material. Clearly this a

challenge for even for a full quantum mechanical treatment: the ability of analytical potential methods

to describe a wide range of properties over a wide range of conditions with relatively low computational

demand is the strength of the approach. Note however, due to the simplified treatment of the net effect

of electrons used to describe chemical bond formation, detailed information such as optical excitations

and electron transport properties are not accessible with the method.

In principle, any set of n interacting particles may be represented as a sum of energies depending on

a single position, a sum over energy terms determined by the coordinates of pairs, a sum over interacting

triplets, and so forth up to the total number of n particles within the system. For many potential models

only pairs and triplets of interactions between atoms are retained (the sum over individual atoms merely

defines a reference energy); the pair and triplet interactions are referred to as two-body (or pair-wise

additive) and three-body terms, respectively. Interaction terms involving the positions of four or more

atoms are usually neglected in the representation of a model potential for many atom systems; however,

it is not always clear that the higher order terms may be a priori neglected. However, by far the most

common analytical potential representations for semiconductors and silicon oxides include only two- and

three-body terms. Thus potentials including higher-order terms are not included in the present survey.

Two general categories for potentials are identified in the comparative study of Balamane, Halicioglu

and Tiller [1]: cluster potentials and cluster functionals. Within the cluster potentials, fall the Stillinger-

Weber [2] and related forms. These potentials are developed from a summation over the two- and

three-body terms V2 and V3 between all atom pairs and triplets used to express the interaction energy of

the system as

V =
∑

V2 +
∑

V3. (4.1)

The pairwise-interactions are often chosen to be of the form:

V2 = fc(rij) × [A1φ1(rij) −A2φ2(rij)] , (4.2)

where rij represents the distance between atom pairs (distance between atomic nuclei). The cut-off

function fc serves to limit the range of the interaction and is modelled in different ways, but it is

generally desirable that the overall potential energy function remain continuous, or at least the cut-off

should not introduce excessive errors in energy conservation and properties calculations. The cut-off is

introduced to limit the range of the interactions leading to numerical efficiencies; φ is a decaying function

of r, and its form varies for specific applications. The Ai are parameters specific to a material system.

The three-body terms are likewise expressed in many different forms, but as a generalization it may be

stated that they are written as a product of radial and angular functions. This class of potential is also

often referred to as short-ranged.

Cluster functionals also take the nature of an atom’s environment into account. They include Tersoff
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and similar potential forms consisting of repulsive and attractive terms summed over atoms:

V =
∑

ij

fc(rij) [A1φ1(rij) −A2φ2(rij)p(ζij)] . (4.3)

The local environment of the atoms are described by p, which represents the Pauling bond order as a

function of the effective coordination number ζ.

The first test of a potential function is often a check to see if it can be used to determine the crystalline

form of a material. Other potentials are developed to describe amorphous materials, and generally this

is a more challenging task as the functions must be able to describe a wider range of bond lengths

and angles. In general, for technology applications, crystalline and amorphorous forms of materials are

important, as well as impurities, random alloys, surfaces and interfaces. Clearly this is a demanding task

for analytical potential functions and below we present an overview of how different potentials may be

used, and as well, where they fail.

A brief description for a selection of commonly used potential forms is given. The procedure applied to

the development of the potential model is described, along with the intended application domain. When

available, an evaluation of the performance of the potential function as described by the developers is

summarized.

To further improve or to customize a potential model, adjustments to gain accuracy for specific

properties are often undertaken. This can take the form of a re-parametrization or by the addition of

new terms to the energy expression. Unfortunately, this can also lead to a decrease in accuracy for other

properties or in the ability to describe other material systems: when a potential energy expression may

be used to describe a variety of systems and properties, it is referred to as transferable. However, even

given the loss of transferabilty, “tuned” potentials can be of great advantage when applied to specific

studies. Not all such modifications for the potential below have been described, but a few illustrative

examples are considered.

4.2.1 Stillinger-Weber (SW) model and related forms

The Stillinger-Weber potential energy function [2] is widely applied to the study of semiconductor mate-

rials; in particular, silicon and carbon. It consists of a sum of two- and three-body interactions:

υ2(rij) = εf2(rij/σ) (4.4)

υ3(ri, rj , rk) = εf3(ri/σ, rj/σ, rk/σ) (4.5)

A five-parameter pair potential is chosen containing a cut-off function that has no discontinuities for r

on [0, a]:

f2(r) =

{

A(Br−p − r−q) exp[(r − a)−1], r < a

0, r ≥ a
(4.6)
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and for the three-body terms f3 the form is chosen as:

f3(ri, rj , rk) = h(rij , rik, θjik) + h(rji, rjk, θijk) + h(rki, rkj , θikj) (4.7)

where h also contains the cut off function parameter a,

h(rij , rik, θjik) = λ exp[γ(rij − a)−1 + γ(rik − a)−1] ×
(

cos θjik +
1

3

)2

(4.8)

With this choice, seven parameters A,B, p, q, a, λ, γ are determined to reproduce the lattice stability and

relative stabilities of various crystalline forms and when appropriate, melting points and correlation func-

tion in the liquid phase. When results using the the potential are compared to experimental quantities,

the Stillinger-Weber potential generally performs well, or in the cases where it does fail, the reason for

its deficiencies are well understood.

Ding and Andersen [3] have adjusted the Stillinger-Weber potential to describe crystalline and

amorphorous forms of germanium. The Stillinger-Weber potential is fitted to experimental values for

cohesive energy at T= 0 K and density at a pressure of 1 atmosphere. As well, the elastic constants of

the crystal and the radial distribution function (rdf) for the amorphorous form (a-Ge) are reproduced.

To determine the rdf, three-body terms are essential, and the rdf for amorphous silicon (a-Si) using the

original Stillinger-Weber parameter set for Si does not reproduce well the experimental rdf for a-Si. The

structure of amorphous germanium is simulated by quenching the liquid phase at constant volume using

the Ding and Anderson parameter set for Ge. The resulting structure, rdf and phonon dispersion of

a-Ge is found to be in good agreement with experiment for this “tuned” parameter set. However, the

properties of liquid Ge are not modelled well, and it has been suggested that different parameter-sets

should be used for different phases when applying the Stillinger-Weber model.

Laradji, Landau and Dunweg [4] adjusted the Stillinger-Weber potential for Si-Ge alloys and

focused on determination of structural properties. Deduction using the formulae and parameters derived

for silicon by Stillinger and Weber and for germanium by Ding and Andersen [3] results in a potential

model for Si1−xGex alloys. Monte-Carlo simulations using the new parameter set, modified to treat two

atom types, were performed and alloy structures were constructed. Critical behaviour at phase transitions

were simulated showing the mixing of Si and Ge atoms. Lattice properties, bond length and angles were

also calculated and found to be in relatively good agreement with experiment. Thermal expansions and

chemical potentials using the potentials were also calculated.

Several articles on application of the Stillinger-Weber potential may be found:

• ref. [5]: the potential form with Larandji, Landau and Dunweg parameters was successfully used

for simulating Ge-growth by cluster deposition. The spreading of the Ge-atoms was modelled and

the pair correlation function was calculated.

• ref. [6]: it was found that the potential works well for high temperatures, elastic constants and

cohesive energy of crystalline silicon (c-Si), as well as phonon frequencies and the description of
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bulk melting and liquid Si. The structures of atomic clusters smaller than 15 atoms are not well

predicted. The structures of larger clusters, tested up to 480 atoms, agrees well with experiment.

• ref. [7]: Applied to Si-Si, Si-Ge and Ge-Ge interactions, using the modified form developed by

Laradji, Landau and Dunweg. The growth of Si1−xGex layers on Si(100) was simulated.

• ref. [8]: The growth of silicon clusters was simulated. Energetic order in building up the clusters

and energetic and structural properties were calculated. Some improvements for the potential were

suggested, and reasonable overall agreement was found.

• ref. [9]: Stability and fragmentation of Si clusters was modelled by energy monitoring. The ground-

state of clusters was also calculated, some structures of particular sizes were found to have pro-

nounced stability, the correpsonding cluster sizes are referred to as ’the magic numbers’. The

structures and binding energies agree well with other studies.

An extra term was added to simulate charged clusters, and stability for the cluster cations was

calculated.

4.2.2 Watanabe

Watanabe et al [10, 11] developed an extended Stillinger-Weber potential for Si-O systems. The total

interaction energy is given by:

Φ =
∑

i

∑

j>i

εf2(i, j) +
∑

i

∑

j>i

∑

k>j

εf3(i, j, k) (4.9)

where ε is the energy scale. A bond-softening function gij is introduced to the Si-O pair-interaction

f2 = gij f
SW
2 . Bond-softening is a function of the co-ordination number of oxygen, and derived to fit

to the ab initio cohesive energy. Included in gij is a Tersoff [12] type cut-off function, but in a less

discontinious form to improve conservation of energy. In the three body term the function h from the

Stillinger-Weber potential is used:

f3(i, j, k) = h(rij , rik, θjik) + h(rji, rjk, θijk) + h(rki, rkj , θikj). (4.10)

The structures, lattice parameters and bond properties of several silica polymorphs were calculated and

compared with ab initio and experimental values. The growth of a SiO2-film was studied [13] with

emphasis on growth modes at monatomic steps in the underlying substrate. The growth mode of SiO2

on Si(001) was found to be dependent on the underlying dimer configuration and crystalline forms were

predicted to become amorphous near steps, as confirmed by experiment.

4.2.3 Tersoff 1,2,3 and related forms

The Tersoff 1 potential [12, 14] takes into account the differences in bond order depending on the envi-

ronment, i.e. through calculation of the number and types of neighbours. The Tersoff potential is a sum
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over bond energies between all atoms:

Vij = fc(rij)[aijfR(rij) + bijfA(rij)] (4.11)

consisting of a repulsive term fR which include effects from overlapping wave functions, an attractive

term fA which represents the bonding and a cut-off function fc:

fc(r) =















1, r < R−D
1
2 − 1

2 sin
[

π
2 (r −R)/D

]

, R−D < r < R+D

0, r > R+D

(4.12)

The repulsive and attractive terms are chosen to be exponential functions for fR(r) = A exp(−λ1r) and

fA(r) = −B exp(−λ2r). The parameters aij and bij and their selection are motivated by theoretical

considerations. The potential as a whole, is then modified to take into account the dependence of the

coordination number on the distances between neighbours and on bond-angles. The parameters are

defined by fitting to a small database of energies of simple bulk structures. The resulting potential is

tested for several properties by comparison to experiments or higher level computations. The comparison

set includes such quantities as structural energies and ordering, bonding properties, elastic constants,

phonon dispersion, energies of defects and vacancies barriers, thermal expansion coefficients, and surface

reconstructions. Elastic and structural properties are generally speaking not well described. The short-

comings of the potential are ascribed to two sources: the cut-off function is an ad hoc estimate and its

explicit form is suspected to cause some discrepancies the calculation of physical quantities sensistive the

the longer range of interatomic distances, and the soft bonding function can also give rise to problems in

some situations as it produces too low of a strain energy, which consequently results in poor predictions

for mechanical properties.

Improvements on the Tersoff 1 potential were designed to yield a better description of elastic prop-

erties, resulting in a second potential Tersoff 2 [15]. Effects for soft-bond bending are included and the

cut-off function is refined, but at the cost that the modified potential generally gives less accurate results

for surface geometries.

For Tersoff 2, parameters are optimised using a database of cohesive energies for bulk structures,

bulk modulus, bond lengths and the elastic constants. Structures are calculated and lattice constants

and structural parameters agree well with experiment. The energy predicted from the model potential

is significantly higher than those calculated using density functional theory (DFT) in the local density

approximation (LDA). Elastic properties and phonon frequencies are calculated well, point defect en-

ergies are satisfactory. Liquid and amorphous silicon is simulated on the resulting structures densities,

coordination numbers and radial distribution function calculations are reported.

Tersoff 3 [16] extends the potential model to Si-Ge and Si-C, where one extra parameter is added as a

factor weighted to account for new combination of atoms. Parameters are fitted to the heat of formation

and result in a potential more accurate than averaging over known values for Si, Ge and C separately.
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Srivastava et al [17] did an extensive study using this model for surfaces including: growth processes,

reconstructions and dimers.

Ishimaru [18, 19] has adjusted the Tersoff 3 potential for applications on amorphous silicon. Simulat-

ing the annealing and quenching of Si-atoms results in a-Si model. Structural and dynamical properties

are calculated: the radial distribution function (rdf), structure factors, defects from coordination num-

bers, and phonon density of states are calculated and compared to experiments, yielding good agreement.

Another application of this potential [20] to Si1−xGex gives good results for alloy structures, but results

in too high melting temperatures. A distortion in the bond angle distribution is observed, and increases

with increasing germanium composition.

Wang and Rockett [21] modified the Tersoff potential for Si surfaces with adatoms. The Tersoff

potential is extended to longer ranges and an angle-dependent screening term is added to the attractive

and repulsive terms.The pair-potential is as usual written as:

Vij = fc(rij) × [Aij exp(−λ1rij) −Bij exp(−λ2rij)], (4.13)

the term Aij is modified to give a cut-off function that has more continuous derivatives at the points

r = Ra ±Da, using the modified values from Tersoff’s R and D.

Aij = A×















1, r < Ra −Da

Bij + (1 −Bij){ 1
2 − 1

2 sin[ π
2(r−Ra)/Da

]} Ra −Da < r < Ra +Da

Bij, r > Ra +Da

(4.14)

This modified form of the potential is used to describe the energies for small clusters, where an improve-

ment is seen due to the modification in the cut-off function. The topography of surfaces and diffusion

energy barriers are given in better agreement with experimental results than Tersoff 3. The resulting po-

tential describes the Si bulk material as well as the original model, but in the new version improvements

for treating surfaces are included.

Umeno et al [22] optimised the Tersoff 1 potential, resulting in two parameter sets for potentials

referred to as Umeno A&B. The original set of parameters is adjusted minimizing the differences in “root

mean square” (rms) values for the forces on the atoms calculated as the difference between the potential

model and ab initio calculations. To model Si-O interactions, some of the constants from the Tersoff

potential are elevated to variables that become interaction specific.

Umeno A is yields an improved description for forces and lattice constants of Si and β-cristobalite SiO2

crystals, however does not perform well at Si/SiO2 interfaces development. Umeno B was then developed

to remedy the problems at the interface between Si and SiO2, giving good results at the interface as well

for the Si and β-cristobalite SiO2 crystalline forms, with errors less than 5% and significantly smaller

than predicted with other forms of the Tersoff potential. Furthermore, as a transferability test, the lattice

constants and force values for β-quartz SiO2 were computed and found to be in good agreement with

experimental values.
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4.2.4 EDIP

A relatively new potential is the environment-dependent interatomic potential (EDIP) [23, 24, 25]. The

development of the potential is based on Stillinger-Weber and Tersoff potentials and methods that have

been used in attempts to improve them, using insights gained from more quantum mechanically based

models such as the Pettifor and Biswas-Hamann potentials. Calculations on the elastic constants pre-

dicted by the potential were used for refinements on the functional form. The potential takes into account

the environment by using an effective coordination number Zi, which is a sum of the contributions of the

neighbours over all atoms. The contributions of neighbours is approximated by a cut-off function:

f(r) =



















1, r < c

exp

(

α

1−( r−c
b−c )

−3

)

, c < r < b

0, r > b

(4.15)

Following Tersoff, the potential is defined to consist of two- and three body terms focusing on pair

bonding and angular forces. The total energy of formation is a sum over the energy for each atom

Ei =
∑

j V2(rij , Zi) +
∑

jk V3(−→r ij ,
−→r ik, Zi). The strength of the bond is defined by V2, bond angles and

angular forces are arising from V3. The form of the Stillinger-Weber form is used for V2, with the bond

order p(Z) derived from ab initio cohesive energies

V2(r, Z) = A

[(

B

r

)ρ

− p(Z)

]

exp

(

σ

r − a

)

. (4.16)

The three-body term is, motivated by the elastic property calculations, chosen to be a function of a radial

function g(r) for each bond and an angular function h(θ, Z):

V3(−→r ij ,
−→r ik, Zi) = g(rij)g(rik)h(lijk, Zi) (4.17)

with g(r) = exp
(

γ
r−b

)

and h(l, Z) = H
(

l+τ(Z)
w(Z)

)

. The functions τ(Z) and w(Z) and their parameters

are defined by theoretical considerations for bond-angles and energies. Thirteen parameters are then

left for fitting with the least-square method to a database of ab initio data for cohesive energies, lattice

constants, energies of formation for point defects and stacking-faults, and experimental elastic constants.

The potential is then tested and compared with Stillinger-Weber, Tersoff 2, Tersoff 3, tight-binding

and density functional theory (DFT) calculations. Calculations are performed to determine for cohesive

energies, elastic properties and dislocations and reconstructions, liquid and amorphorous silicon, pair

correlation functions and radial distribution functions. The bulk equilibrium properties, defects and

dislocations are improved, other properties are described as well by the Stillinger-Weber potential.
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4.2.5 Vashishta et al

Vashishta, Kalia, Rino and Ebbsjö [26] developed a two- and three body term effective potential for SiO2.

The potential has the form:

V =
∑

V2(rij) +
∑

V3(rij , rjk, rik) (4.18)

The two-body part V2 is a sum of three interaction terms: steric repulsion, Coulomb interaction and

charge-dipole interaction:

V2 =
Hij

rηij
+
ZiZj

r
−

1
2 (αiZ

2
j + αjZ

2
i )

r4
exp

(

r

r4s

)

(4.19)

The three-body potential V3 consists of terms for the effects of bond stretching f , bond bending p and

the strength of the interaction B, which are established using a cut-off function:

V3 = Bijkf(rij , rik)p(θjik, θjik) (4.20)

The parameters in the potential, 18 in total, are partly known from literature or earlier experiments, the

unknown parameters where derived from experiments.

The resulting potential focuses on structural properties for a-SiO2, some crystals and molten SiO2

using molecular dynamics. Densities, self-diffusion constants and pair distributions were also calculated;

results were compared with diffraction experiments and found to be in good agreement.

4.2.6 TTAM/Tsuneyuki et al

TTAM [27] is a potential based on Hartree-Fock calculations, developed for SiO2 and SiO2polymorphs. Ab

initio calculations are used to construct the potential. The best fit is obtained for the form of the potential

contains terms for modified Coulomb interaction, Born-Mayer repulsion and dispersive interaction:

Uij(r) = UCoulomb
ij (r) + f0(bi + bj) exp[(ai + aj − r)/(bi + bj)] − cicj/r

6. (4.21)

This is of the Buckingham-form which may be written as:

V Buck
ab = Aab exp

( −r
Bab

)

− Cab

r6
(4.22)

The Coulomb interaction consists of short- and long-range terms, the modified long-range part is recal-

culated with the Ewald sum method and taking into account specific configurations of the atoms. The

parameters are fit with a structure optimisation and to the compressibility of α-quartz. Configurations

of α-quartz, α-cristobalite, coesite and stishovite were calculated with molecular dynamics, the stabilities

found are used as a test for the validity of the potential. Structural parameters, binding energy and elastic

properties are calculated, crystal stability and bulk moduli are found to be in reasonable agreement with

experiment. For phase transitions and thermal expansions, the method is combined with total-energy
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methods to obtain accurate results.

4.2.7 Flikkema-Bromley (FB)

Using a genetic algorithm in conjunction with the GULP program [28], a Buckingham-form potential

for SiO2 nanoclusters was developed [29]. Parameters are optimised by a fitting procedure to known

nanostructures as calculated using DFT. The energy-order for several structures and the DFT-calculated

energies are used to optimise the parameters. The potential was tested by calculating several structures

of silicon-clusters, and compared with two other potentials BKS [30], TTAM [27] and a semi-empirical

PM3 method. According to these simulations, this potential yields better results for small clusters than

potentials derived for bulk applications. The energy r.m.s. error is smaller for the FB potential than

with BKS, TTAM and PM3, the structure is better also than TTAM, but no significant differences for

PM3 and BKS are seen.

4.2.8 MEAM

Using force-matching and a combination of Stillinger-Weber and EAM potential forms, the MEAM model

is first fit to determine silicon properties. The form of the potential is identical to Baskes’ MEAM [35],

but with modified parameterizations. A large database is used to fit the potential parameters. The

data consisted of ab initio forces and energies for clusters, liquid and amorphous silicon, experimental

elastic constants and phonon frequencies and DFT calculations in the local density approximation (LDA)

for vacancy and defects energies. Two methods were used to minimize the error in fitting the energy:

Powell’s least square method and a simulated annealing scheme. Results are compared with EDIP [23],

Tersoff-3(T3) [16], the tight binding method and Stillinger-Weber(SW) [2]. In general energy and lattice

results were better than or comparable to EDIP, both EDIP and Lenosky [31] are found to be better than

the SW and T3 results. For thermodynamic properties, the Lenosky potential yields comparable results

to T3. For dislocations and defects, EDIP and SW are less accurate. A disadvantage of the potential is

poor predictions for stabilities, brittle fractures and density of some crystals, and the liquid phase is too

dense.

4.2.9 Eichler

This model [32] combines ab initio and force field methods and is optimized for the study of SiO2

polymorphs. The energy of a system or unit cell is divided in an inner and an outer part. The inner

part is calculated using quantum-mechanical methods and the outer part is be described by an analytic

potential:

E(System) = EQM(I) + EMM(O) + EMM(I −O) (4.23)

EMM is calculated using an analytic potential. EMM(I − O) is the interaction between regions. This

derived from the energy and forces in two regions resulting in equations containing both quantum-

mechanical and force-field terms. Molecular dynamics is applied to calculate properties of different
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clusters representing different SiO2 polymorphs. In general, the inclusion of Hartree-Fock methods within

the model is found to give better results than the use of the analytical potentials alone.

4.2.10 Biswas-Hamann A&B

The Biswas-Hamann potentials [33] include two and three body potentials for Si. The two-body term is

a modified Morse-type potential with cutoff function fc:

V2(r) = (A1e
−λ1r2

+A2e
−λ2r2

)fc(r) (4.24)

The three-body term is dependent on the two lengths r1, r2 and the bond angle θ, which is expressed

using Legendre polynomials:

V3(r12, r13, θ1) =
∑

l

Clφl(r12)φl(r13, r)Pl(cosθ1) (4.25)

Rewriting using spherical harmonics, this expression contains summations over the structure moments

describing the local environment bond-order. The resulting generalized three body term for a special

case of the Legendre polynomial is:

V3(r12, r13, θ) = [B1ψ1(r12)ψ1(r13)

(

cosθ +
1

3

)2

+B2ψ2(r12)ψ2(r13)

(

cosθ +
1

3

)3

] × fc(r12)fc(r13) (4.26)

with the function ψi = e−air
2

.

The potential is fitted to DFT-LDA calculations for energy and structure. Surface and bulk energy

calculations were performed, phonon dispersions and frequencies and clusters were compared to DFT

calculations. This potential describes high-pressure properties and surfaces well, but does not predict

well interstitial and layered structures. A second potential was developed to improve these features and

is suitable for tetrahedral structures, but not does not perform as well for non-tetrahedral structures.

4.2.11 BKS

BKS [30] is a potential developed for modelling SiO2 polymorphs and aluminophosphates. Starting from

the TTAM potential[27], and using a Buckingham form to describe the interaction energy Φij , a Coulomb

term and a covalent short-range term are contributing to the potential:

Φij = qiqj/rij +Aij exp(−bijrij) − cij/r
6
ij (4.27)

The parameters are obtained by an alternating fitting to cluster and bulk values for elastic properties, cell

constants to account for short-range interactions as well as the long-range Coulomb interaction. Lattice
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parameters and elastic properties are compared to TTAM, ab initio and empirical force field results for

SiO2 polymorphs, the results of this potential are represent a significant improvement over the TTAM

model.

4.2.12 Baskes MEAM

The embedded-atom method(EAM)[34] is modified by Baskes [35] for Si, Ge and SiGe alloys. Effects

from further than nearest neighbours are included, as well as bond-bending forces. The total energy is

defined as in the EAM:

Etot =
∑

i

Fi(ρh,i) +
1

2

∑

i,j

φij(Rij) (4.28)

with Fi the energy needed to embed an atom, φij is the pair-potential and ρh,i is the host-electron density

which is modified in the MEAM.

The studied properties are bulk structural energies and geometry, point defects, meta-stability of non-

crystalline solids surfaces and small clusters. All are compared to DFT calculated values. Defects energies

and vacancy diffusion are calculated and compared to DFT results with varying levels of agreement. Meta-

stable structural energies and geometries are found to be in good agreement, within about 0.2 eV for Si

and 0.4 eV for Ge. Elastic constants found by MEAM are qualitatively acceptable. The stacking fault

energy is found to be too large, which is thought to be the same source of error generally for surface

calculations. The potential is tested on clusters, it is advised not to use the potential in small clusters,

but the results for large clusters are reasonable. And finally, the electron-density profiles are calculated

and it is concluded that the modified electron-density ρh,i could be further refined.

4.3 Literature comparisons and analysis

Several comparative studies of the model potentials discussed have been given in the literature, and a

summary of the comparisons is given in Table 4.1. The commonly applied Stillinger-Weber potential

is included in many of these studies. The Tersoff 3 model is also tested in a reasonable number of the

comparsions. Other model potentials have been tested less extensively and it is difficult to make general

statements regarding their applicability across a wide range of problems.

Generally speaking, the Stillinger-Weber model can be applied to a wide range of property calculations.

It performs well in many cases but is not recommended for surface or cluster calculations. Othere

potentials can yield better results for specific properties: Tersoff 3 results in the best predictions for

point defects whereas EDIP performs better for surface defects. Ishimaru and EDIP forms are suitable

for amorphous silicon. For modelling clusters, Tersoff 2 provides a reasonable description, but other

potentials in the list have been developed specifically to study clusters, for example Flikkema-Bromley

model, and may prove to be better suited for clusters.

The summary of the comparisons made in the literature is provided as an overview, and to help guide

initial selection of potential models. Of course, each model must be tested and validated for a particular
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study. The conclusion is: each model potential has its own sets of strengths and weaknesses. This sum-

mary and overview is intended to help narrow selection of a model potential for specific applications, but

validation studies are always recommended to insure that a given model potential will provide meaningful

results when used within a simulation.

4.4 Applications

Several crystalline forms or polymorphs of SiO2 are known and their structures and symmetries are

tabulated; for example in Wyckoff’s Crystal Structures [36]. A typical feature of the crystalline forms

is the SiO4 tetrahedral units from which the different structures are built. Polymorphs differ from

one another in terms of geometry, density, and stability (as a function of temperature and pressure).

Transitions between polymorphs can occur when a change of temperature or pressure leads to a new region

of a SiO2 phase diagram. The most common forms of silica are quartz, tridymite and cristobalite, listed

in order of increasing symmetry or decreasing density. Other forms examined for our test calculations are

coesite, keatite and stishovite, which are produced only in rare circumstances of high temperature and

pressure. Some forms of silica exist in two phases, labelled either α or β. The low (normal) temperature

phase α transforms into the β-structure when the temperature reaches a certain point and is reversible

upon cooling. The atoms within the structrures are displaced, without creation of dangling bonds, into

the new equilibrium positions.

For SiO2 polymorphs, the Buckingham form is found to produce reasonable results. Other potentials

that are of the Buckingham form are BKS (4.2.11), Tsuneyuki (TTAM, 4.2.6) and Flikkema-Bromley (FB,

4.2.7). The Buckingham potential can be implemented with parameters to obtain the potentials BKS,

TTAM and FB. TTAM is the original developed potential from Buckingham for SiO2 polymorphs. BKS

is TTAM optimised for SiO2 polymorphs, FB is adjusted for SiO2 clusters and may therefore produce

good results for high strain structures.

Si and Ge crystals are of the cubic diamond structure with respective lattice constants of a = 5.43 Å

and a = 5.65 Å. Random alloys of Si and Ge consists of a random distribution of the two atom types

over diamond lattice sites, accompanied by a structural relaxation off site to accommodate the random

environment.

The lattice constant for SixGe1−x is to a good approximation given according to Vegard’s law, which

is a linear interpolation between the Si and Ge lattice constants as a function of the fractional alloy

composition x.

The potentials investigated for silicon are the the Buckingham (see 4.2.6), Tersoff (4.2.3) and Stillinger-

Weber (4.2.1) forms. This gives three categories of simulations that can be tested: the series of SiO2

polymorphs, Si/Ge crystals and surfaces or interfaces of Si and SiO2, or Si1−xGex.

The Tersoff potential is available for Si and Ge crystals and surfaces. The Umeno potential is of the

Tersoff-variety and has been optimised for SiO2 polymorphs. Umeno B can be used for Si and Si poly-

morphs, for both bulk and surface situations. The Stillinger-Weber potential was developed for the study

of Si-crystals. Varieties described in the SW section, 4.2.1, Ding-Andersen (DA) and Laradji,Landau and
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Figure 4.1: Results for lattice constants of different silica polymorph structures using model potentials

Figure 4.2: Comparsion of lattice constants for Si, Ge and Si.75Ge.25 alloy using model potentials.
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Dunweg (LLD), have been optimised to treat Ge-crystals and SiGe-alloys, respectively.

LLD uses the same Ge-Ge parameters as DA, so gives the same results for Ge. SW is given in two

varieties, where one is using only the two-body interaction potentials and the other using both two-

and three-body interaction potentials. The Stillinger-Weber potentials were applied as well to SiGe and

Ge, although not developed for them. The set of parameters were just converted to Si-Ge and Ge-Ge

interactions. This was done to be able to compare SW to LLD and DA.

Stillinger-Weber is developed with parameters that agree with the Baskes MEAM (4.2.12), in an

adjusted form [38]. The new form is referred to as SW-N, the original as SW-O, with an additional

number 2 or 3 to indicate the two- and three body interaction potentials.

The GULP program used to optimize structures and compare geometries from DFT calculations

and experiment. The results from the simulations compared are the cell dimensions and the fractional

coordinates for the atomic positions. These are compared directly with experimental values. The lattice

parameters are take as the most significant measure of accuracy of the potential for our comparisions on

periodic structures. The series of SiO2 polymorphs is tested with the BKS, TTAM, FB, Buckingham

and Umeno B potentials. For semiconductor crystals, Si and Ge crystals and the Si0.75Ge0.25 alloy are

studied with analytical potential models and compared to DFT calculations. Tests are performed using

the Tersoff, Stillinger-Weber (two- and three-body, in original and modified form), the SW-varieties DA

and LLD and Umeno A and B for silicon.

The Tersoff and Umeno B potentials were tested on the interfaces of Si/SiO2, Si/SiGe and Si/Ge,

using molecular dynamics and energy minimization. The interfaces are simulated through an annealing

cycle, starting from 1100 K decreasing in steps of 200 K. These temperatures are not higher than typ-

ical maximum production temperatures in conventional semiconductor manufacturing. The molecular

dynamics allows the structure to react to the forces within the structure, allowing structural relaxation.

Lowering the temperature will reduce the atomic motion, until eventually freezing into a local potential

energy minimum.

SiO2 polymorphs For all polymorph structures, the percentage difference is calculated between exper-

imental input values and the optimised result obtained using GULP, see Table 4.6. The average values of

cell constants and angles over each of the structures except keatite and stishovite are shown in Table 4.3.

In fig. 1, the averaged calculated cell constants are shown for each of the structures. The Buckingham

(2-8%) and FB (6-10%) potentials work well for the high temperature and pressure SiO2 polymorphs,

coesite, keatite and stishovite. Umeno B gives a good result for stishovite. The BKS and TTAM poten-

tials do not work well for keatite and stishovite. TTAM results in an error for keatite. Results from BKS

and TTAM in some cases result in distorted cell structures.

Si and Ge Umeno A and B have been previsouly tested in literature [22] with the results for lattice

constants reported. From our study. the results for Si, Ge and the Si0.75Ge0.25-alloy are summarized in fig.

4.2, reporting the percentage deviation in lattice constants between experimental and calculated values.

In the figure comparable values are grouped, the exact values of lattice constant and angle deviations for
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Figure 4.3: Ge surface energy as a function of biaxial strain. Green: (2x1) reconstruction of Ge (001) surface,
Blue: Rebonded step (RS) reconstruction of Ge (105)

Figure 4.4: Si1−xGex surface energy as a function of composition/biaxial strain. Green: (2x1) reconstruction of
Si1−xGex (001) surface, Blue: Rebonded step (RS) reconstruction of Si1−xGex (105)
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all potentials can be found in table 4.6. The LLD uses the same Ge-Ge interaction as from DA; for the

Ge case, the results from these two models are the same. The two potentials are taken together in the

results. The SW-N potential with the new parameters [38], is giving the same results as the same as LLD

and DA. The original SW is giving large improvements. The SW potentials are available in two forms,

with two or three body interactions. The results differ only significantly for the angles of the SiGe-alloy,

which are much better calculated with the SW-3 three body potentials.

Cell parameters are calculated reasonably for all potentials considered for Si and Ge. It seems to

be that the larger the percentage of Ge, the larger the error in the result, this would suggest that the

potentials could use some improvement on the Si-Ge and/or Ge-Ge-parameters.

As a next evaluation of the potential models, surface energies of Si and Ge were calculated using

a convergent approach, in which slabs of different thickness are used to extract surface energies from

slab calculations. This approach can provide better surface energy estimates than the commonly used

subtraction of bulk energies from total slab energies. Simulated annealing was performed for various

silicon, germanium and alloys using an initial temperature of 1100 K, followed by steps of 900 K, 600 K,

300 K and 0 K (energy optimization step). The total time of the simulated of annealing was 28 ps with a

timestep of 1 fs. After this anneal, approximately two thirds of the surface atoms for the Ge surface have

formed dimers, and the dimers are not in a parallel arrangement as seen for the (2x1) reconstruction. The

surface energy is calculated to be 89.7 meV/Å2. It also should be noted that this result is not exactly

reproducible if different simulation conditions (such as time of annealing or the value of timestep) are

used. The (2x1) reconstruction was introduced as the initial state of the Ge (001) surface. The value of

surface energy was calculated to be 82.8 meV/Å2. In both cases, Tersoff’s T3 potential is used. After the

surface reconstructions are introduced, the lowest surface energy can be found by using the MD simulated

annealing followed by a structure optimization. In the fig. 3, Ge surface energy versus strain for the (105)

rebonded step (RS) reconstruction (energies fit to a quadratic polynomial shown in blue) and (001) (2x1)

reconstruction (fit to a quadratic polynomial, shown in green) is presented. The simulations confirm that

(105) RS reconstruction is energetically preferable over (001) (2x1) for strained Ge surfaces. In fig. 4 a

similar study is shown whereby surface energy is investigated versus alloy composition; here it is found

that the stability ordering for the two reconstruction is not altered as a function of alloy composition.

However, the relative stability of the two reconstructions vary significantly for silicon-rich or germanium

-rich alloys.

4.5 Conclusion

Our analysis of the selected potentials is not intended to be definitive, but is provided to illustrate the con-

siderations required when selecting a model potential for a given application. Hence, our literature survey

is intended to be representative, we have focused on potential functions used for common semiconducting

materials and silicon oxides. Calculations, primarily for structure properties, have been performed to

illustrate the typical steps required to benchmark and compare a given potential form.

One of the main advantages of applying analytical potential functions is the spatial and time scales
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for material systems that can be treated is much larger than for other atomic scale methods. We have not

presented large scale structure or molecular dynamics simulations, but it is useful to bear in mind that

calculations orders of magnitude larger than those presented here are possible with atomistic models,

thus increasing their relevance for modern technology design.
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Table 4.1: Literature comparisons for selected atomic potential models
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Table 4.2: Overview of applications for atomistic potential models
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Table 4.3: Averaged percentage differences for calculated cell parameters relative to experimental values for SiO2

polymorphs

cell constant angle

Buckingham 3.935% 0.005%
Umeno B 4.978% 0.000%
BKS 5.617% 0.000%
FB 7.299% 0.009%
TTAM 8.466% 0.000%

Table 4.4: Calculations and literature comparison for Umeno [22] and Tersoff [16], lattice constant in Å

Si β-cristobalite β-quartz, a-axis β-quartz, c-axis

Experiment 5.43 7.16 5.01 5.47
Umeno B calc 5.38 7.56 5.16 5.67

lit 5.40 7.15 5.21 5.73
Tersoff calc 5.43 8.15 5.47 5.98

lit 5.43 - - -
Umeno A calc 5.19 - - -

lit 5.24 - - -

Table 4.5: Energies for MD and energy minimisation of surfaces and interfaces (in eV)

non-fixed Si24Ge8/Si32 Si32Ge64 Si64Ge32 Si/SiO2 bridge Si/SiO2 no bridge

1100 K -289.88 -361.51 -386.06 -287.37 -273.28

900 K -278.97 -349.77 -378.69 -469.83 -414.05

700 K -284.53 -358.99 -381.79 -478.86 -420.95

500 K -284.92 -363.67 -385.05 -481.58 -422.73

300 K -285.90 -366.55 -388.97 -485.16 -425.65

En.min. -290.00 -372.43 -395.43 -491.46 -429.84

fixed

1100 K -361.51 -386.06 -287.37 -273.28

900 K -353.81 -376.08 -441.23 -385.60

700 K -356.11 -380.93 -445.28 -394.82

500 K -358.06 -382.81 -448.99 -396.38

300 K -361.19 -383.52 -451.34 -398.78

En. min. -365.72 -390.12 -467.87 -421.49
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Table 4.6: Percentage difference relative to experiments for constants and angles

Lattice constants SiO2polymorphs
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FB 5.47% 7.22% 7.62% 7.63% 8.76% 7.079% 8.46% 6.56% 9.61%

TTAM 10.26% 9.19% 7.76% 7.76% 7.39% 8.44% 8.76% error 76.21%

Buckingham 5.77% 4.42% 3.36% 3.36% 2.69% 4.01% 1.99% 8.29% 5.67%

BKS 7.39% 6.27% 4.95% 4.95% 4.51% 5.62% 5.80% 63.02% 69.89%

UmenoB 3.82% 2.77% 6.68% 4.89% 4.33% 7.35% 7.37% 12.57% 0.94%

Lattice angles SiO2polymorphs
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FB(angles) 0.04% 0.00% 0.00% 0.01% 0.00% 0.00% 0.10% 0.55% 0.00%

TTAM 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% error 0.00%

Buckingham 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.08% 5.19% 0.00%

BKS 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 40.56% 0.00%

UmenoB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.12% 10.18% 0.00%

Lattice constants Si-Ge crystals Lattice angles Si-Ge crystals
Si Si-Ge Ge Si Si-Ge Ge

DA/LLD 1.73% 2.70% 5.48% DA/LLD 0.00% 0.00% 0.00%

SW-new 2 1.73% 2.70% 5.48% SW-new 2 0.00% 0.02% 0.00%

SW-new 3 1.73% 2.70% 5.48% SW-new 3 0.00% 0.00% 0.00%

SW-original 2 0.01% 0.96% 3.82% SW-original 2 0.00% 0.06% 0.00%

SW-original 3 0.01% 0.99% 3.82% SW-original 3 0.00% 0.00% 0.00%

Tersoff 0.02% 0.03% 0.13% Tersoff 0.00% 0.00% 0.00%

Umeno A 3.58%

Umeno B 0.58%
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Chapter 5

The ~k · ~p method.

P. Marconcini, M. Macucci

Dipartimento di Ingegneria dell’Informazione,

Università di Pisa,

Via Caruso 16, I-56122 Pisa, Italy

5.1 Introduction

To understand the physical properties of semiconductors it is necessary to know their electronic band

structure, in particular the behavior of energy as a function of the wave vector ~k in the reciprocal lattice

of the crystal. Several numerical methods can be successfully used to find the band structures and the

corresponding wave functions, such as the tight binding, the pseudopotential, the orthogonalized plane

wave, the augmented plane wave, the Green’s function and the cellular methods [1]. These methodologies

can provide us with the desired results throughout the ~k-space.

Actually many phenomena, for example in the study of electrical transport (due to both electrons and

holes) and of optical properties (such as absorption or gain due to electronic transitions caused by an

incident optical wave), involve only the top of the valence band and the bottom of the conduction band.

Indeed, low energy electrons and holes are situated in these regions and also electronic transitions occur

near the band edges of direct band-gap semiconductors.

The ~k · ~p method [2] is a perturbative technique which allows to obtain the band structures of materials

in the regions of the reciprocal space near the band extrema, expanding the eigenvalues and eigenvectors

of the single electron Hamiltonian as a function of ~k around the wave vector ~k0 corresponding to the

band maximum or minimum. This method, introduced by J. Bardeen [3] and F. Seitz [4] and used by

W. Shockley [5] and G. Dresselhaus, A. F. Kip and C. Kittel [6], received a general formulation with

E. O. Kane [7] and J. M. Luttinger and W. Kohn [8, 9], and was later applied to strained materials (by

G. E. Pikus and G. L. Bir [10]), to heterostructures (for example by G. Bastard [11], M. Altarelli [12]
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and M. G. Burt [13]) and to carbon nanotubes (by M. Ajiki and T. Ando [14]), resulting a very useful

and quite easy way to study the local properties of materials.

5.2 Perturbation theory and ~k · ~p method

In a pure crystal an electron is subject to a periodic potential energy

V (~r) = V (~r + ~R) , (5.1)

with ~R any linear combination of the lattice vectors, and thus also the Hamiltonian is invariant under

translation by the lattice vectors. Therefore if ψn
~k

(~r) is the wave function of an electron moving in the

crystal also ψn
~k

(~r + ~R) will be a solution of the Schrödinger equation and therefore will coincide with

ψn
~k

(~r) apart from a constant with unit modulus (otherwise the wave function can grow to infinity if we

repeat the translation ~R indefinitely). Thus the general form of the electron wave functions will be

ψn
~k

(~r) = ei~k·~run
~k

(~r) (5.2)

where ψn
~k

(~r) is usually called “Bloch function”, while un
~k

(~r) is called “Bloch lattice function” and is

periodic with the lattice periodicity:

un
~k

(~r + ~R) = un
~k

(~r) (5.3)

(Bloch’s theorem).

Starting from the Schrödinger equation for ψn
~k

(~r):

H(0)ψn
~k

(~r) = En
~k
ψn

~k
(~r) (5.4)

with

H(0) = − ~
2

2me
∇2 + V (~r) (5.5)

(where me is the electron mass and ~ is the reduced Planck constant) and substituting to ψn
~k

(~r) the

generic expression of the Bloch function we obtain:

(

− ~
2

2me
∇2 + V (~r)

)

ei~k·~run
~k

(~r) =

= − ~
2

2me

~∇ ·
(

ei~k·~r(~∇un
~k

(~r)) + (~∇ei~k·~r)un
~k

(~r)
)

+ V (~r)ei~k·~run
~k

(~r) =

= − ~
2

2me

~∇ ·
(

ei~k·~r(~∇un
~k

(~r) + i~kun
~k

(~r))
)

+ V (~r)ei~k·~run
~k

(~r) =

= − ~
2

2me

(

ei~k·~r ~∇ · (~∇un
~k

(~r) + i~kun
~k

(~r)) +

+ (~∇ei~k·~r) · (~∇un
~k

(~r) + i~kun
~k

(~r))
)

+ V (~r)ei~k·~run
~k

(~r) =
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= − ~
2

2me

(

ei~k·~r(∇2un
~k

(~r) + i~k · ~∇un
~k

(~r)) +

+ (i~k ei~k·~r) · (~∇un
~k

(~r) + i~kun
~k

(~r))
)

+ V (~r)ei~k·~run
~k

(~r) =

=− ~
2

2me
ei~k·~r

(

∇2un
~k

(~r) + i~k · ~∇un
~k

(~r) + i~k · ~∇un
~k

(~r) − k2un
~k

(~r)
)

+ V (~r)ei~k·~run
~k

(~r)=

= ei~k·~r

((

− ~
2

2me
∇2 + V (~r)

)

− i ~2

me

~k · ~∇ +
~

2k2

2me

)

un
~k

(~r) =

= ei~k·~r(H(0) +H(1))un
~k

(~r) = ei~k·~rEn
~k
un

~k
(~r) (5.6)

and thus

Hun
~k

(~r) = (H(0) +H(1))un
~k

(~r) = En
~k
un

~k
(~r) (5.7)

with

H(1) = − i ~
2

me

~k · ~∇ +
~

2k2

2me
(5.8)

(where k = |~k|). What we have just obtained is clearly an equation for the Bloch lattice functions, which

needs to be solved only for a single primitive cell with the boundary condition that the function un
~k

(~r)

must be periodic with the lattice periodicity. For each value of ~k this equation has a periodic solution

only for selected values En
~k

of the energy E. Noting that H(1)(~r) reduces to zero when ~k approaches ~0

and thus that this part of the Hamiltonian can be treated as a perturbation around ~k = ~0, we can locally

solve this equation using the time-independent perturbation theory, assuming to know the eigenfunctions

and eigenvalues of H(0)(~r), i.e. the Bloch lattice functions and the energy band values for ~k = ~0.

For most of the semiconductors the maximum of the valence band is in the Γ-point (the center of the

first Brillouin zone represented by the Wigner-Seitz method) and therefore corresponds to ~k = ~0; the

minimum of the valence band instead is for ~k = ~0 only for the direct-gap semiconductors. When the

extremum point of the energy band (and thus the interesting region) is for a generic ~k0, we can easily

extend this argument observing that, if we define the value of H in ~k0 as

H ~k0
= H(0) − i ~2

me

~k0 · ~∇ +
~

2k0
2

2me
, (5.9)

we have that the value of H in ~k is

H = H(0) +H(1) = H ~k0
+

[

− i ~
2

me
(~k − ~k0) · ~∇ +

~
2(k2 − k0

2)

2me

]

=

=H ~k0
+

[

− i ~
2

me
(~k − ~k0)·~∇ +

~
2(k2 − k0

2)

2me
+

~

me
(~k − ~k0)·~~k0 −

~

me
(~k − ~k0)·~~k0

]

=

= H ~k0
+

[

~

me
(~k − ~k0) · (~~k0 − i ~~∇) +

~
2

2me
|~k − ~k0|2

]

(5.10)

and for ~k near ~k0 the term between square brackets can be treated as a perturbation of H ~k0
[15]. For the

sake of simplicity, in the following we will consider ~k0 = ~0.
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An important point to notice is that, if we choose a value for ~k, the functions un
~k

(~r) form an orthogonal

and complete set, in the restricted sense that any function with the lattice periodicity can be expanded

in terms of the Bloch lattice functions for any selected ~k.

To describe the main results of time-independent perturbation theory [16], we have to distinguish the case

in which the unperturbed energy levels are non-degenerate from the case in which such a degeneration

exists. Let us begin from the first case. The problem we have to solve is

[H(0) +H(1)]|n〉 = En|n〉 (5.11)

where H(0) is the unperturbed Hamiltonian and H (1) the perturbation. If we expand the eigenvalues En

and the eigenfunctions |n〉:

En = E(0)
n + E(1)

n + E(2)
n + . . .

|n〉 = |n〉(0) + |n〉(1) + |n〉(2) + . . . , (5.12)

we insert these expressions into the eigenvalue equation and we enforce the identity between terms of the

same order we find

H(0)|n〉(0) = E(0)
n |n〉(0)

H(0)|n〉(1) +H(1)|n〉(0) = E(0)
n |n〉(1) + E(1)

n |n〉(0)

H(0)|n〉(2) +H(1)|n〉(1) = E(0)
n |n〉(2) + E(1)

n |n〉(1) + E(2)
n |n〉(0)

. . . (5.13)

The first equation corresponds to the unperturbed eigenvalue equation, the solution of which, E
(0)
n = E0

n

and |n〉(0) = |n0〉, are assumed known. From the other equations, instead, we can obtain the corrections

to these values produced by the perturbation H (1). In particular if we stop to the first-order corrections

for the eigenfunctions and to the second-order corrections for the eigenvalues we find:

|n〉 ' |n0〉 + |n〉(1) = |n0〉 +
∑

m6=n

(

|m0〉 〈m0|H(1)|n0〉
E0

n − E0
m

)

(5.14)

(choosing 〈n0|n〉(1) = 0) and

En ' E0
n + E(1)

n + E(2)
n = E0

n + 〈n0|H(1)|n0〉 +

+
∑

m6=n

( 〈n0|H(1)|m0〉〈m0|H(1)|n0〉
E0

n − E0
m

)

. (5.15)

When we examine degenerate unperturbed states, the expressions we have just found diverge and thus we

have to modify our treatment. In particular if the degenerate energy level E
(0)
n corresponds to a multiplet
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of degenerate states |na0〉 (with a = 1, 2, . . . , gn where gn is the degeneracy) and we have to solve the

perturbed problem

H|ψ〉 = [H(0) +H(1)]|ψ〉 = E|ψ〉 (5.16)

we can express the new generic eigenfunction |ψ〉 as

|ψ〉 =

gn
∑

a=1

|na〉〈na|ψ〉 (5.17)

where the |na〉’s are states which are related to the unperturbed eigenvectors |na0〉’s by the perturbation

matrix elements between different multiplets (as we will see). If we define

Hn
ab = 〈na|H|nb〉 = 〈na|[H(0) +H(1)]|nb〉 (5.18)

we can express our perturbed equation in the following way:

gn
∑

b=1

Hn
ab〈nb|ψ〉 = E〈na|ψ〉 . (5.19)

Noting that the definition of the Hn
ab’s can be equivalently expressed in this way:

[H(0) +H(1)]|nb〉 =

gn
∑

a=1

|na〉Hn
ab , (5.20)

inserting into this equation the expansions

Hn
ab = (Hn

ab)
(0) + (Hn

ab)
(1) + (Hn

ab)
(2) + . . .

|na〉 = |na〉(0) + |na〉(1) + |na〉(2) + . . . , (5.21)

and enforcing the identity of the terms of the same order, we find

H(0)|nb〉(0) =

gn
∑

a=1

|na〉(0)(Hn
ab)

(0)

H(0)|nb〉(1) +H(1)|nb〉(0) =

gn
∑

a=1

|na〉(1)(Hn
ab)

(0) +

gn
∑

a=1

|na〉(0)(Hn
ab)

(1)

H(0)|nb〉(2) +H(1)|nb〉(1) =

gn
∑

a=1

|na〉(2)(Hn
ab)

(0) +

+

gn
∑

a=1

|na〉(1)(Hn
ab)

(1) +

gn
∑

a=1

|na〉(0)(Hn
ab)

(2)

. . . (5.22)
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The first equation corresponds, noting that (Hn
ab)

(0) = E0
nδab, to the unperturbed eigenvalue equation,

the solution of which, E0
n and |na〉(0) = |na0〉, are assumed known. From the other equations, instead,

we can obtain the corrections to these values produced by the perturbation. In particular, if we stop to

the first-order corrections for the eigenstates and to the second-order corrections for the eigenvalues, we

find:

|nb >' |nb0〉 + |nb〉(1) = |nb0〉 +
∑

m6=n

gm
∑

c=1

(

|mc0〉 〈mc0|H
(1)|nb0〉

E0
n − E0

m

)

(5.23)

(choosing 〈nc0|nb〉(1) = 0) and

Hn
cb ' (Hn

cb)
(0) + (Hn

cb)
(1) + (Hn

cb)
(2) = E0

nδcb + 〈nc0|H(1)|nb0〉 +

+
∑

m6=n

gm
∑

a=1

( 〈nc0|H(1)|ma0〉〈ma0|H(1)|nb0〉
E0

n − E0
m

)

. (5.24)

Once the Hn
cb have been found, we can obtain the energy levels E solving the equation

gn
∑

b=1

Hn
ab〈nb|ψ〉 = E〈na|ψ〉 , (5.25)

or, equivalently, finding the eigenvalues of the matrix Hn (matrix gn × gn with elements Hn
ab) imposing

det (Hn −EI) = 0

(with I the gn×gn unit matrix). We notice that, computing also the eigenvectors 〈na|ψ〉 of such a matrix

and combining such results with the |nb〉 that have been computed before up to the first order, it is also

possible to know the eigenfunctions |ψ〉 of the perturbed problem.

In the case of the ~k ·~p Hamiltonian that we have found before [17], we can use the un
0 (~r) (un

~k
(~r) for ~k = ~0)

as |n0〉 and we have that

〈m0|H(1)|n0〉 = 〈m0| − i ~2

me
(~k · ~∇)|n0〉 + 〈m0|~

2k2

2me
|n0〉 . (5.26)

The second term clearly gives only diagonal matrix elements because it is equal to (~2k2/(2me))δnm. As

to the first term, instead, it gives only non-diagonal matrix element because it is known [18] that

〈n~k0|(−i~~∇)|n~k0〉 + ~~k0 = me~vn =
me

~

~∇~kE
n
~k

(5.27)

(where ~vn is the expectation value of the velocity of the Bloch waves, and in our considerations we are

assuming ~k0 = ~0) and ~∇~kE
n
~k

= ~0 in the band extrema.
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Then, for non-degenerate unperturbed energy bands, we can write that

En
~k

= En
0 +

~
2k2

2me
+

~
2

me
2

∑

m6=n

〈n0|~k · (−i ~ ~∇)|m0〉〈m0|~k · (−i ~ ~∇)|n0〉
En

0 − Em
0

=

= En
0 +

~
2

2

∑

µ,ν

kµkν

m∗µν

(5.28)

where µ, ν = x, y, z, while m∗µν is the effective-mass tensor defined by

1

m∗µν

=
1

me
δµν +

2

me
2

∑

m6=n

Pnm
µ Pmn

ν

En
0 − Em

0

(5.29)

and the momentum matrix elements at the band extremum are

Pnm
µ = 〈n0|(−i ~∇µ)|m0〉 . (5.30)

For degenerate unperturbed energy bands, instead, we have

(Hn
~k

)cb = En
0 δcb +

~
2k2

2me
δcb +

~

me
〈nc0|~k · (−i ~ ~∇)|nb0〉 +

+
~

2

me
2

∑

m6=n

gm
∑

a=1

〈nc0|~k · (−i ~ ~∇)|ma0〉〈ma0|~k · (−i ~ ~∇)|nb0〉
En

0 − Em
0

=

= En
0 δcb +

~

me

∑

µ

kµ(Pµ)nn
cb +

~
2

2

∑

µ,ν

kµkν

mcb
µν

(5.31)

where µ, ν = x, y, z, while mcb
µν is the effective-mass tensor defined by

1

mcb
µν

=
1

me
δcbδµν +

2

me
2

∑

m6=n

gm
∑

a=1

(Pµ)nm
ca (Pν)mn

ab

En
0 − Em

0

(5.32)

and the momentum matrix elements at the band extremum are

(Pµ)nm
cb = 〈nc0|(−i ~∇µ)|mb0〉 . (5.33)

In most of the cases all the (Pµ)nn
cb = 0 and the linear term in kµ disappear. The energy levels will be

found solving

det (Hn
~k
− EI) = 0 . (5.34)

Thus, to make a calculation of the energy bands we have to know the Bloch lattice functions at ~k = ~0.

Most semiconductors of interest have the diamond or zinc blende crystal structure; for these materials

we can choose as lattice primitive cell a Wigner-Seitz cell centered around an atomic site (the one with
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Figure 5.1: Wigner-Seitz primitive cell for the diamond or zinc blende structure.

the strongest potential in the case of the zinc blende structure, characterized by atoms that are not all

identical) and with four other atoms forming a tetrahedron with the center coincident with the primitive

cell center (Fig. 5.1). If we use a central force model, considering the potential inside the primitive cell

as due only to the attraction of the nucleus of the central atom, shielded by its electrons, and afterwards

we treat the electrostatic potential of the cores at the vertices of the primitive cell as a perturbation,

we find that the Bloch lattice functions at ~k = ~0 exhibit particular symmetry properties (to the same

result we can arrive using group theory). In particular the top of the valence band can be described with

three degenerate states: |vx0〉 = ρv(r)x, |vy0〉 = ρv(r)y and |vz0〉 = ρv(r)z (each one antisymmetric with

respect to a coordinate and symmetric with respect to the others), while in most cases the bottom of the

conductance band is described by a non-degenerate symmetric state |c0〉 = ρc(r) (with the important

exception of silicon, where also the bottom of the conduction band is characterized by three states with

symmetry properties analogous to the Bloch lattice functions of the valence band).

If we treat the conduction band as a non-degenerate band, we therefore obtain

Ec
~k

= Ec
0 +

~
2

2

∑

µ,ν

kµkν

m∗µν

(5.35)

where µ, ν = x, y, z and

1

m∗µν

=
1

me
δµν +

2

me
2

∑

m6=n

〈c0|(−i ~∇µ)|m0〉〈m0|(−i ~∇ν)|c0〉
Ec

0 − Em
0

. (5.36)
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The largest contribution to the sum comes from the bands m for which |Ec
0 − Em

0 | is smallest, i.e. from

the three valence bands. If we compute the momentum matrix elements between the valence bands and

the conduction band, we find that, due to the symmetry properties of the Bloch lattice functions,

〈vµ0|(−i ~∇ν)|c0〉 = −〈c0|(−i ~∇ν)|vµ0〉 = −i ~P δµν (5.37)

with µ, ν = x, y, z and P = 〈vµ0|∇µ|c0〉 a non-zero quantity which multiplied by ~ has the dimensions

of a momentum. Consequently the effective mass in the conduction band that we find is isotropic and

equal to
1

m∗µν

=
1

m∗c
δµν =

(

1

me
+

2 ~
2P 2

m2
eE

0
g

)

δµν (5.38)

with E0
g = Ec

0 − Ev
0 .

As to the valence band, we have to use the degenerate perturbation theory and, with a motivation

analogous to the one used in the study of the conduction band, we can consider only the interaction

between the three degenerate valence bands and the conduction band, which is the nearest energy band.

Thus, using the previous results, we will have that

(Hv
~k

)αβ = Ev
0 δαβ +

~
2

2

∑

µ,ν

kµkν

mαβ
µν

(5.39)

with

1

mαβ
µν

=
1

me
δαβδµν +

2

me
2

∑

m6=v

gm
∑

a=1

〈vα0|(−i ~∇µ)|ma0〉〈ma0|(−i ~∇ν)|vβ0〉
Ev

0 − Em
0

=

=
1

me
δαβδµν +

2

me
2

〈vα0|(−i ~∇µ)|c0〉〈c0|(−i ~∇ν)|vβ0〉
Ev

0 − Ec
0

=

=
1

me
δαβδµν − 2 ~

2P 2

me
2E0

g

δαµδβν (5.40)

and thus the valence energy bands near the extremum can be obtained finding the eigenvalues of the

matrix

Hv
~k

=

(

Ev
0 +

~
2k2

2me

)

I − ~
4P 2

m2
eE

0
g









k2
x kxky kxkz

kykx k2
y kykz

kzkx kzky k2
z









. (5.41)

Till now we have not considered the effect of the so-called spin-orbit interaction, which often has a non-

negligible influence on the energy bands. The physical phenomenon is the following [19]. An electron has

an intrinsic magnetic moment

~µ = −γe
~

2
~σ = −geγL

~

2
~σ = −ge

e

2me

~

2
~σ = −geµB

~σ

2
(5.42)
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where e is the modulus of the electron charge, ~σ is a vector with three components consisting in the Pauli

spin matrices:

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

, (5.43)

γe is the intrinsic gyromagnetic ratio of the electron, γL is its orbital gyromagnetic ratio, ge = γe/γL is

its intrinsic g-factor and µB = e~/(2me) is the Bohr magneton. When an electron moves in a system

(like the atom) where the charge distribution (for example the nucleus charge) produces an electric field

~E, for the theory of relativity in the frame of reference of the electron this electric field will appear as

a magnetic field. In particular if the electron moved uniformly, the equivalent magnetic field would be

equal to ~B = −(~v× ~E)/c2. The fact that the electron (and its frame of reference) is rotating halves such

an equivalent magnetic field. Thus the Hamiltonian of the electron will have an additional part

HSO = µB ~σ ·
(

~E × ~v

2 c2

)

=
e ~

4mec2
~σ · ( ~E × ~v) =

~

4mec2
~σ · ((~∇V ) × ~v) (5.44)

(with V the potential energy), which in the absence of an external magnetic field can be written also as

HSO =
~

4m2
ec

2
~σ · ((~∇V ) × ~p) . (5.45)

However, if we insert this additional term in the original Schrödinger equation for the wave function

ψn
~k

(~r) = ei~k·~run
~k

(~r) we obtain

HSOψ
n
~k

(~r) =
~

4m2
ec

2
~σ ·
(

(~∇V ) × (−i ~ ~∇)
)

ei~k·~run
~k

(~r) =

=
~

4m2
ec

2
~σ ·
(

(~∇V ) ×
(

(~~kei~k·~r)un
~k

(~r) + ei~k·~r(−i ~ ~∇un
~k

(~r))
))

=

= ei~k·~r

(

~
2

4m2
ec

2
~σ · ((~∇V ) × ~k) +

~

4m2
ec

2
~σ · ((~∇V ) × (−i ~ ~∇))

)

un
~k

(~r) .

(5.46)

If we repeat the procedure used to move from the Schrödinger equation for the wave functions ψn
~k

(~r) to

the equation for the Bloch lattice functions un
~k

(~r) we obtain that in the Hamiltonian of this last equation

there will be two additional terms:

~
2

4m2
ec

2
~σ · ((~∇V ) × ~k) +

~

4m2
ec

2
~σ · ((~∇V ) × (−i ~ ~∇)) =

~
2

4m2
ec

2
~σ · ((~∇V ) × ~k) +HSO .

(5.47)

The first term near ~k = ~0 is small compared with the other term; thus only the second term is usually

considered. The second term in the case of a potential energy with spherical symmetry (and thus of a
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radial electric field) becomes

HSO =
e ~

4m2
ec

2
~σ · ( ~E × ~p) =

e ~

4m2
ec

2
~σ · Er

r
(~r × ~p) = −i

(

e ~
2Er

4m2
ec

2r

)

~σ · (~r × ~∇) .

(5.48)

In order to calculate the influence that the spin-orbit term has on the valence bands, we need to calculate

the matrix elements on the basis states |vx0〉, |vy0〉, |vz0〉 and |c0〉. Due to the symmetry proprieties of

such states, we see that the only non-zero elements are the non-diagonal elements between valence band

states:

〈vy0|HSO|vx0〉 = −〈vx0|HSO|vy0〉 = i λσz

〈vz0|HSO|vy0〉 = −〈vy0|HSO|vz0〉 = i λσx

〈vx0|HSO|vz0〉 = −〈vz0|HSO|vx0〉 = i λσy (5.49)

with λ an appropriate non-zero quantity obtained from the calculations.

Therefore considering also the spin-orbit coupling the matrix Hv
~k

becomes

Hv
~k

=

(

Ev
0 +

~
2k2

2me

)

I − ~
4P 2

m2
eE

0
g









k2
x kxky kxkz

kykx k2
y kykz

kzkx kzky k2
z









+ i λ









0 −σz σy

σz 0 −σx

−σy σx 0









(5.50)

where σx, σy and σz are the Pauli spin matrices, which do not commute with one another. If we

consider the special case ~k ‖ ẑ we can quite easily find the eigenvalues of this matrix, arriving to a

third-order equation in the energy, the solutions of which represent the dispersion relations of the three

valence bands, each one degenerate with respect to the spin. In particular, if we make the approximation

(~4P 2k2/(m2
eE

0
g )) � λ we find the solutions:

Ehh = Ev
0 + λ+

~
2

2

1

me
k2

Elh = Ev
0 + λ+

~
2

2

1

me

(

1 − 4 ~
2 P 2

3meE0
g

)

k2

Eλh = Ev
0 − 2λ+

~
2

2

1

me

(

1 − 2 ~
2 P 2

3meE0
g

)

k2 . (5.51)

Thus, considering the effect of the spin-orbit interaction, we have obtained (Fig. 5.2) two valence bands

(the heavy-holes band and the light-hole band) degenerate at ~k = ~0, where they have an energy Eg =

E0
c − (E0

v + λ) = E0
g − λ lower than the conduction band, and one valence band (the spin-orbit band)

which for ~k = ~0 has an energy ∆ = 3λ lower than the other two valence bands. We notice that, while the
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Figure 5.2: Band structure near ~k = ~0 obtained with the simplified model.

light-hole band and the spin-orbit band have a negative effective mass of the same order of magnitude

of the effective mass of the electrons in the conduction band, the heavy-hole band is characterized by a

much larger effective mass (the fact that the obtained effective mass is positive instead disappears with

a more refined treatment: obviously the effective mass of the electrons in the valence bands has to be

negative, which corresponds to a positive effective mass for the holes, which are the true charge carriers

in such bands).

This simplified model is amenable to several refinements.

As to the conduction band, we can include in the calculation the spin-orbit splitting of the valence band

and the effect of the higher conduction bands. In particular, with the first change we obtain a better

expression for the effective mass in the conduction band:

1

m∗c
=

1

me
+

2

me
2

[

2 ~
2P 2

3Eg
+

~
2P 2

3(Eg + ∆)

]

(5.52)

where Eg = E0
g − λ.

Also in the treatment of the valence bands we can consider the effect of the higher conduction bands;

one of the effects is that the resulting valence bands lose their isotropy and exhibit a complex orientation

dependence in the reciprocal space (“band warping”).

It is important to notice that the expressions found for the band structure depend on a small number

of parameters, for example Eg, ∆ and m∗c (from which we can calculate the parameter P using the

expression found for the effective mass of the conduction band). These quantities are commonly obtained

from “a priori” band structure calculations or, better, experimentally: in particular the bandgap values

Eg and ∆ are accurately known from optical experiments, while m∗c is known from cyclotron resonance

experiments.

The approach reported in this first part, based on the “traditional” perturbation theory and well described
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by T. Wenckebach [17], differs from the method originally proposed by E. O. Kane [7], which uses the

perturbation theory introduced by P. Löwdin [20]. Following this last method, we can divide all the

bands into two sets A and B: A is the set we want to treat exactly and B contains all the other bands.

At the lowest order of perturbation theory the coupling between the set A and the set B can be removed

introducing the perturbed functions

u′i = ui +

B
∑

n

Hniun

(Hii −Hnn)
(5.53)

where i is in A and n is in B. The renormalized interactions connecting u′i and u′j are given by

H ′ij = Hij +
B
∑

n

HinHnj
(

Hii +Hjj

2
−Hnn

) (5.54)

(with i, j in A). In this way we can reduce the Hamiltonian matrix, which in principle connects all

the possible bands, to a Hamiltonian matrix relating only the bands of interest, in which, however, the

interactions with the non considered bands are included. We notice that the Löwdin perturbation theory

reduces to the ordinary perturbation theory when only a single band is considered in the set A.

As to the simplified case in which we consider only the three valence bands and the conduction band

(not including the effects of the other bands) and in which ~k ‖ ẑ, Kane solves exactly the Hamiltonian

of the Bloch lattice functions in the presence of spin-orbit interaction [21] and finds, for small values of

k2, the following expressions for such bands (choosing the zero of energy at the top of the light-hole and

heavy-hole bands and defining the various quantities as before):

Ec = Eg +
~

2

2

1

me

(

1 +
4 ~

2 P 2

3meEg
+

2 ~
2 P 2

3me(Eg + ∆)

)

k2

Ehh =
~

2

2

1

me
k2

Elh =
~

2

2

1

me

(

1 − 4 ~
2 P 2

3meEg

)

k2

Eλh = −∆ +
~

2

2

1

me

(

1 − 2 ~
2 P 2

3me(Eg + ∆)

)

k2 . (5.55)

These expressions are very similar to the expressions obtained with the previously described simplified

model, but clearly show the dual effect that each reciprocal interaction has on the related couple of bands.

In this simple case, Kane also finds the Bloch lattice functions un
~k

(~r) that diagonalize the Hamiltonian

(i.e. the eigenfunctions of the Hamiltonian) as linear combinations of the un
0 (~r) considered in the absence

of spin-orbit (i.e. the functions |c0〉, |vx0〉, |vy0〉 and |vz0〉 taken with spin-up and spin-down); in

particular for small k they are: i|c0〉| ↑>, i|c0〉| ↓>, 1/
√

2(|vx0〉 + i |vy0〉)| ↑>, 1/
√

2(|vx0〉 − i |vy0〉)| ↓>,

−
√

2/3|vz0〉|↑> +1/
√

6(|vx0〉 + i |vy0〉)|↓>, −1/
√

6(|vx0〉 − i |vy0〉)|↑> −
√

2/3|vz0〉|↓>, 1/
√

3(|vx0〉 +

i |vy0〉)| ↓> +1/
√

3|vz0〉| ↑> and −1/
√

3(|vx0〉 − i |vy0〉)| ↑> +1/
√

3|vz0〉| ↓> (where | ↑> and | ↓> are
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respectively the spin-up and spin-down unit spinors).

Kane treats instead the interaction of conductance and valence bands with the other bands through the

previously cited Löwdin perturbation theory.

5.3 Envelope function theory and application to heterostruc-

tures

To introduce the concept of the envelope functions, we can make a very approximate calculation [22] in

the hypothesis that the external potential energy U(~r) (“external” here meaning “not due to the periodic

structure of the lattice”) is slowly varying on an atomic scale and the n-th energy band that we are

considering is non-degenerate (thus with unique independent Bloch lattice function un
~k

(~r)). In this case,

the Schrödinger equation for the electron wave function ψ(~r):

(

− ~
2

2me
∇2 + UL(~r)

)

ψ(~r) + U(~r)ψ(~r) = Hψ(~r) + U(~r)ψ(~r) = Eψ(~r) (5.56)

(where UL(~r) is the periodic lattice potential energy and H is the Hamiltonian in the absence of the

external potential energy U(~r)) is equivalent to the equation

En(−i ~∇)F (~r) + U(~r)F (~r) = EF (~r) (5.57)

where En(−i ~∇) represents the operator obtained replacing, in the dispersion relation En(~k) describing

the n-th energy band, each component of ~k with the correspondent component of −i ~∇, and F (~r) is the

envelope function, a slowly varying function that, when we consider only the n-th band, multiplied by the

fast varying Bloch lattice function un
0 (~r) (considered in ~k = ~0) gives the electron wave function. Indeed,

if we expand ψ(~r) in the orthogonal basis set |ν~k〉 = ei~k·~ruν
~k
(~r)/

√
V (with V the crystal volume):

ψ(~r) =
∑

ν,~k

aν(~k)|ν~k〉 (5.58)

we can re-write the Schrödinger equation in matrix form using the basis |ν~k〉:

∑

ν′,~k′

(

〈ν~k|H + U(~r)|ν′~k′〉aν′(~k′)
)

= Eaν(~k)

Eν(~k)aν(~k) +
∑

ν′,~k′

(

〈ν~k|U(~r)|ν′~k′〉aν′(~k′)
)

= Eaν(~k) (5.59)

where we have used the fact that

〈ν~k|H|ν′~k′〉 = Eν′(~k′)〈ν~k|ν′~k′〉 = Eν(~k)δν ν′δ~k~k′ . (5.60)
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In particular for ν = n we have that

En(~k)an(~k) +
∑

ν′,~k′

(

〈n~k|U(~r)|ν′~k′〉aν′(~k′)
)

= Ean(~k) . (5.61)

If instead we expand the envelope function equation in the orthogonal set of plane waves |~k〉 = ei~k·~r/
√
V :

F (~r) =
∑

~k

a(~k)|~k〉 (5.62)

we can re-write the effective mass equation in matrix form using the base |~k〉:

∑

~k′

(

〈~k|En(−i ~∇) + U(~r)|~k′〉a(~k′)
)

= Ea(~k)

En(~k)a(~k) +
∑

~k′

(

〈~k|U(~r)|~k′〉a(~k′)
)

= Ea(~k) (5.63)

using the fact that

(−i∇ν)p|~k′〉 = (−i∇ν)p(ei~k′·~r/
√
V ) = (k′ν)p(ei~k′·~r/

√
V ) = (k′ν)p|~k′〉 (5.64)

with ν = x, y, z and thus

En(−i ~∇)|~k′〉 = En(~k′)|~k′〉 (5.65)

(being En(−i ~∇) an operator composed by operators of the type (−i∇ν)p) and then exploiting the

orthogonality relation 〈~k|~k′〉 = δ~k~k′ . The two equations 5.61 and 5.63, obtained from the Schrödinger

equation and from the envelope function equation are exactly equal if

〈n~k|U(~r)|ν′~k′〉 = δn ν′〈~k|U(~r)|~k′〉 , (5.66)

i.e. if the matrix elements of the external potential U(~r) between states from different bands are negligible.

This is what happens if U is slowly varying on an atomic scale. Indeed in this case we have that (if we

consider the uν
~k
(~r) normalized in a unit volume)

〈n~k|U(~r)|ν′~k′〉 =
1

V

N
∑

j=1

∫

Vj

d3~r un
~k

∗(~r)uν′

~k′
(~r)ei (~k′−~k)·~rU(~r) '

'
N
∑

j=1

ei (~k′−~k)·~rjU(~rj)
1

V

∫

Vj

d3~r un
~k

∗(~r)uν′

~k′
(~r) '

'
N
∑

j=1

ei (~k′−~k)·~rjU(~rj)δn ν′

1

N
' δn ν′

∫

V

d3~r
ei (~k′−~k)·~r

V
U(~r) = δn ν′〈~k|U(~r)|~k′〉 (5.67)
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where V the crystal volume, Vj the volume of the j-th unit cell, ~rj the coordinate of its center and N

the number of unit cells. We have assumed that U(~r) and ei (~k′−~k)·~r are approximately constant over a

unit cell and un
~k′

(~r) ' un
~k

(~r) over the range of values of |~k′ − ~k| for which 〈~k|U(~r)|~k′〉 is not negligible.

If the two equations 5.61 and 5.63 are identical, they have the same solutions an(~k) and a(~k). Thus

(assuming that aν(~k) is non-zero only for the particular band n, coherently with our hypothesis that

there is no mixing between the bands) we can write that

ψ(~r) =
∑

ν,~k

aν(~k)|ν~k〉 =
∑

~k

an(~k)
ei~k·~r

√
V
un

~k
(~r) '

' un
0 (~r)

∑

~k

an(~k)
ei~k·~r

√
V

= un
0 (~r)

∑

~k

an(~k)|~k〉 = un
0 (~r)F (~r) (5.68)

where we have used the leading approximation for un
~k

(~r).

We notice that if we express En(~k) as

En(~k) = En
0 +

~
2

2

∑

µ,ν

kµkν

m∗µ ν

(5.69)

(with µ, ν = x, y, z) the envelope function equation becomes

−~
2

2

∑

µ,ν

∇µ∇ν

m∗µ ν

F (~r) + (En
0 + U(~r)) = EF (~r) (5.70)

and when the effective mass is isotropic ((1/m∗µ ν) = (1/m∗)δµ ν)

− ~
2

2m∗
∇2F (~r) + (En

0 + U(~r)) = EF (~r) (5.71)

(effective mass equation).

Luttinger and Kohn have studied the general form of the envelope function equations and in particular

of the Hamiltonian that in such equations appears, with the aim to arrive at the determination of the

dispersion relations of the energy bands as eigenvalues of such Hamiltonian [23]. In a famous paper [8]

they start from the Schrödinger equation (H0 +U)ψ = En(~k)ψ, with H0 the Hamiltonian of the electron

in the periodic lattice potential and U an additional potential which is assumed not to vary much over

each unit cell. They expand, operating in the momentum space, ψ in the complete orthonormal set of

functions |n~k〉 = ei~k·~run
0 (~r) and re-write the Schrödinger equation accordingly. Then they remove the

coupling between the n-th band and the others to the first order by means of a canonical transformation,

treating accurately only the terms to the second order in ~k. At the end they go back to the position

space and they introduce the envelope function, in terms of which the resulting equation reads

(En(−i ~∇) + U(~r))Fn(~r) = EFn(~r) (5.72)
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(the envelope function equation that we have already introduced), with En(−i ~∇) obtained expanding

En(~k) (the dispersion relation in the absence of U(~r)) to second order in ~k around ~k = ~0 with the

non-degenerate perturbation theory:

En(~k) = En
0 +

~
2k2

2me
+

~
2

me
2

∑

α,β

kαkβ

∑

m6=n

Pnm
α Pmn

β

En
0 − Em

0

(5.73)

(with α, β = x, y, z) and substituting each component of ~k with the correspondent component of −i ~∇.

The leading term in the wave function ψ(~r) in general turns out to be related to the envelope function

by

ψ =
∑

n

Fn(~r)un
0 (~r) (5.74)

which in this case, having removed all the interband coupling, reduces to

ψ = Fn(~r)un
0 (~r) (5.75)

(the relation which we have already stated). If locally the external potential changes considerably within

a cell, in that region the thus derived equation is no longer valid, but it continues to be valid in regions

of space sufficiently distant from it.

Then they demonstrate that in the presence of an external magnetic field the envelope function satisfies

an equation similar to the one in the absence of a magnetic field, the only difference being that the new

Hamiltonian is obtained replacing, in the expansion of En(~k) to quadratic terms, each kα by the operator

−i∇α + (e/~)Aα (in the MKS unit system; in the cgs system we have to divide also by c), with Aα

the α-th component of the vector potential (and c the speed of light). Moreover in the expansion of

En(~k) to the second order any product of noncommuting factors which arises has to be interpreted as

the symmetrized product.

In the case in which the extremum is at ~k = ~k0 6= ~0, the demonstrations (both in the absence and in the

presence of an external magnetic field) can be repeated just replacing un
0 (~r) (the eigenfunctions for ~k = ~0

in the absence of U(~r) and of external magnetic field) with ei~k0·~run
~k0

(~r) (the eigenfunctions for ~k = ~k0 in

the absence of U(~r) and of external magnetic field). In this case the envelope function equation remains

the same, but with En expanded up to the second order terms around ~k0 instead of around ~0 and the

relation between the wave function and the envelope function is

ψ = Fn(~r)(ei~k0·~run
~k0

(~r)) . (5.76)

If there are extrema at several different values of ~k0 within the band, we obtain an envelope function

equation for each of these; if the solutions corresponding to the different ~k0 have different energies, the

corresponding wave functions represent independent solutions of the Schrödinger equation; otherwise the

correct wave function will be a linear combination of those from the different extrema which lead to the

same energy.
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When the band of interest is degenerate, the calculation can be done in a similar way, with the proper

changes, arriving at a set of coupled second order equations which correspond to the effective mass

equation found in the case of non-degenerate bands. In particular (considering the point ~k = ~0) let us

assume to have r unperturbed degenerate Bloch lattice functions corresponding to the same unperturbed

energy En
0 (where “unperturbed” means for ~k = ~0 and in the absence of U(~r) and external magnetic

field) and let us define them φj (with j = 1, . . . , r where r is the degeneracy), i.e.

H0φj = En
0 φj (5.77)

(notice that the φj , i.e. the un
0 , can be seen as Bloch functions ei~k·~run

~k
for ~k = ~0 and so they have to

satisfy the Schrödinger equation for ~k = ~0). We will instead indicate as φi (with i 6= 1, . . . , r) the other

unperturbed Bloch lattice functions, not degenerate with the φj . With this convention, the result to

which Luttinger and Kohn arrive is that the r envelope functions Fj(~r) corresponding to the originally

degenerate energy bands satisfy the r coupled differential equations:

r
∑

j′=1





∑

α,β

(

Dαβ
jj′ (−i∇α)(−i∇β)

)

+ (En
0 + U(~r))δj j′



Fj′(~r) = EFj(~r) (5.78)

(where in the absence of an external potential energy and setting the energy zero at En
0 the term multiplied

by δj j′ in the equation disappears) with α, β = x, y, z and

Dαβ
jj′ =

~
2

2me
δj j′δα β +

~
2

me
2

∑

i

(Pα)j i(Pβ)i j′

(En
0 − Ei

0)
. (5.79)

The leading term of the complete wave functions are related to the envelope functions by:

ψ =

r
∑

j=1

Fj(~r)φj(~r) . (5.80)

We notice that the numbers Dαβ
jj′ play the same role in the case of degenerate bands that ~

2/(2m∗αβ) do

for a non-degenerate band.

As before, in the presence of a magnetic field the elements of the Hamiltonian will be obtained from
∑

α,β(Dαβ
jj′kαkβ) replacing each component of ~k with the correspondent component of −i~∇ + (e/~) ~A (in

the MKS unit system; in the cgs system we have to divide also by c).

In the presence of spin-orbit coupling, Luttinger and Kohn adopt the same treatment followed in its

absence considering the spin-orbit contribution as part of the unperturbed Hamiltonian (the total unper-

turbed Hamiltonian will be H0 + HSO) and the Bloch lattice functions and the correspondent energies

for ~k = ~0 as known quantities. Thus the un
0 are replaced with the ũn

0 (the spin-dependent Bloch lattice

functions for ~k = ~0), En(~k) by Ẽn(~k) (the dispersion relation in the presence of spin-orbit) and the
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(Pα)n n′ by

(πα)n n′ = 〈ũn
0 |
(

−i ~∇α +
~

4mec2
(~σ × ~∇V )α

)

|ũn′

0 〉 (5.81)

where the extra term arises from the fact that the spin-orbit coupling contains the differential operation ~p.

When we treat energy bands which are degenerate in the absence of spin-orbit, we have to consider that (as

seen previously) the spin-orbit coupling can lift, at least partially, the degeneracy. In such a case we have

to consider that the validity of the adopted theory rests on the assumption that the interband separations

are large compared with the energies involved in the solution of the envelope function equation. Thus

we have to evaluate if the external potential U or the magnetic field are sufficiently small to produce no

appreciable mixing of the bands, the degeneracy of which has been splitted by the spin-orbit coupling.

If it is sufficiently small, we can obtain a different set of coupled envelope function equations for each

set of bands that have remained degenerate; otherwise we will have to deal with the full set of coupled

equations for all the bands that are degenerate in the absence of spin-orbit.

We can introduce a matrix D, the elements of which are

Djj′ =
∑

α,β

Dαβ
jj′kαkβ . (5.82)

If in such matrix elements we replace each component of the vector ~k with the correspondent component

of the operator −i ~∇ + (e/~) ~A (divided by c in the cgs system) we obtain the terms which appear in the

envelope function coupled equations. As we have seen, the envelope function coupled equations written

in the absence of an external perturbation read (if we set the energy zero at En
0 ):

r
∑

j′=1

∑

α,β

(Dαβ
jj′ (−i∇α)(−i∇β))Fj′(~r) = EFj(~r) . (5.83)

If we convert them from the position representation to the momentum representation, we obtain

r
∑

j′=1

∑

α,β

(Dαβ
jj′kαkβ)Bj′(~k) = EBj(~k)

r
∑

j′=1

Djj′Bj′(~k) = EBj(~k)

D~B = E ~B (5.84)

(where Bj(~k) is the Fourier transform of Fj(~r)), from which it is evident that the dispersion relations

E(~k) near the extremum can be obtained finding the eigenvalues of the matrix D. We notice that this

is clearly correspondent to what happens in the case of non-degeneracy, in which (as we have seen) the

envelope function equation contains En(−i ~∇) (the dispersion relation in the absence of external potential

energy or magnetic field, in which each component of ~k is substituted with the correspondent component

of −i ~∇).

Using group theory, in particular considering that the Hamiltonian D should be invariant under the
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operations of the cubic group (so that the Hamiltonian will give us results which transform correctly with

respect to the transformations of the cubic group, which is the symmetry group of ~k) and thus writing D

as linear combination of the invariants obtained combining angular momentum matrices and components

of ~k, Luttinger [9] obtains explicit expressions for D. The elements of such a matrix are polynomials in

k at most of the second-order and involve parameters characteristic of the materials, which have been

experimentally found and are available for most common semiconductors [24]. For example in the case of

the 4 × 4 matrix D corresponding to the light-holes and heavy-holes bands (the extra factor of 2 coming

from spin) they are γ1, γ2, γ3, κ (which is useful in the presence of an external magnetic field) and q

(which approaches zero as the spin-orbit coupling does).

We notice that this method has been generalized, especially for narrow band-gap semiconductors, to

include also the conduction band in the set of energy bands for which the matrix D is computed.

Bir and Pikus [10] have shown that in uniformly strained semiconductors, such that the periodicity of the

structure is preserved, the strain introduces in the dispersion relation of non-degenerate bands an extra

term of the kind

ac(εxx + εyy + εzz) (5.85)

and in the Hamiltonian of degenerate bands additional terms of the form

∑

α,β

D̂αβ
j j′εαβ (5.86)

where α, β = x, y, z and εα β is the generic component of the strain matrix.

Bastard [11], adopting the Kane approach, analogously to Luttinger notices that the Hamiltonian which

appears in the envelope function equation in the absence of an external potential energy is equal, apart

from the substitution of the components of −i ~∇ with the correspondent components of ~k, to the matrix

the eigenvalues of which give the dispersion relations of the material. Then he uses the envelope func-

tion method to study heterostructures, for example made up of two materials A and B (Fig. 5.3). In

particular he assumes that the two materials are perfectly lattice-matched and crystallize with the same

crystallographic structure, so that the functions un
0 (~r) in the two materials can be considered identical.

With this hypothesis, if in each material the wave functions are written as

ψ(A,B) =
∑

n

F (A,B)
n (~r)un

0 (~r) (5.87)

it is evident that, since the un
0 are linearly independent and the wave function has to be continuous at

the interface, also the envelope functions have to be continuous at the interface. As to the derivative of

the envelope functions, Bastard finds, imposing the continuity of the probability current at the interface,

a general condition [25], which in the simple case in which the two materials are both characterized by

non-degenerate parabolic and isotropic bands but by different effective masses m∗(A) and m∗(B) reduces to

imposing the continuity of
1

m∗
∂Fn

∂z
(5.88)
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y
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Figure 5.3: Heterojunction between two semiconductors A and B.

(where we have assumed the ẑ axis orthogonal to the interface). This can be easily obtained enforcing in

this case the continuity of the z component of the probability current density, which is equal to

jz = − i ~

2m

(

ψ∗
∂ψ

∂z
− ψ

∂ψ∗

∂z

)

(5.89)

and noting that the continuity of the envelope function has already been enforced. As to the asymptotic

behavior of the envelope functions far from the interface, it depends on the heterostructure under con-

sideration. For example for superlattices the z-dependent part of the envelope function will be a Bloch

wave, due to the periodicity of the structure in that direction, while for the bound states of a quantum

well it should tend to zero for large z. Thus the envelope functions in the overall structure can be found

solving the envelope function equations in the different materials, knowing the asymptotic behavior far

from the interface and enforcing the correct boundary conditions at the interface. Bastard has also made

an extensive analysis of the applications of this method [26].

Also M. Altarelli has given important contributions to the development of the envelope function method

[27] and to its applications to the study of heterostructures [12].

M. G. Burt [13] has pointed out the errors deriving from the assumption, normally made in the ap-

plication of the envelope function method to heterostructures, that the un
0 (~r) in the two materials be

the same and from the boundary condition enforced on the derivative of the envelope function at the

interface. In a series of interesting and detailed articles he has developed an alternative envelope function

theory expanding the wave function in the entire structure on the same periodic basis functions Un(~r)

throughout, even though they are not necessarily eigenstates of the constituent crystals, without making

any hypothesis on the real eigenstates un
0 (~r):

ψ(~r) =
∑

n

Fn(~r)Un(~r) . (5.90)
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Figure 5.4: The graphene lattice in the real space (a) and in the reciprocal space (b).

The envelope functions Fn(~r) univocally defined in this way and all their derivatives are certainly con-

tinuous everywhere, including at the interface. Using this approach, he has first derived exact envelope

function equations, then for local potentials and slowly varying envelope functions (but without any as-

sumption on the rate of variation of the composition) has formulated approximated envelope functions

equations, and finally, with the usual assumption of the dominance of one envelope function, has arrived

at an effective-mass equation that includes also the effect of the differences in the un
0 (~r) between the two

materials. At each step the associated approximations are accurately described, so that it is possible to

estimate the error.

5.4 Application of the ~k · ~p method to carbon nanotubes

In the following we show the application of the ~k ·~p method to a material which is particularly interesting

for its physical properties: carbon nanotubes.

A single-wall carbon nanotube can be described as a graphene sheet rolled, along one of its lattice

translational vectors, into a cylindrical shape. To find its energy dispersion relations and electron wave

functions we will study the two-dimensional graphite (graphene) and at the end we will enforce periodic

boundary conditions in the circumferential direction.

A graphene sheet is a hexagonal lattice of carbon atoms. In Fig. 5.4(a) we show its structure in the real

space and in particular its unit cell as a dashed rhombus, containing two inequivalent carbon atoms A

and B, while in Fig. 5.4(b) we show the lattice in the reciprocal space with the Brillouin zone as a shaded

hexagon. The lattice unit vectors are ~a1 and ~a2 in the real space, and ~b1 and ~b2 in the reciprocal space. If

we define a = |~a1| = |~a2| = aC−C

√
3 (with aC−C the distance between nearest-neighbor carbon atoms),
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M
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Γ

Figure 5.5: The energy dispersion relations of the graphene inside its hexagonal Brillouin zone.

the coordinates of these vectors in the represented reference frame are:

~a1 =













√
3

2
a

a

2

0













, ~a2 =













√
3

2
a

−a
2

0













, ~b1 =













2π√
3a

2π

a

0













, ~b2 =













2π√
3a

−2π

a

0













(5.91)

(following the conventions used by R. Saito, G. Dresselhaus and M. S. Dresselhaus [28]), which fulfill

the well-know relation ~ai ·~bj = 2πδij between lattice unit vectors in the real space and in the reciprocal

space. The most relevant graphene dispersion relations for transport and other solid state properties are

the two π-bands (a upper anti-bonding band and a lower bonding band), which are degenerate at the

points

~K =













2π√
3a

2π

3a

0













=
2π√
3a













1

1√
3

0













and ~K ′ =













2π√
3a

−2π

3a

0













=
2π√
3a













1

− 1√
3

0













(5.92)

and obviously at their equivalents in the reciprocal space (as we can see from Fig. 5.5, which has been

obtained by a nearest-neighbor tight-binding approach limited to the 2pz atomic orbitals, with nonzero

nearest-neighbor overlap integral).

Thus we can use the ~k · ~p method to find the dispersion relations of the graphene near these extrema

points, following the approach of K. Ajiki and T. Ando [14] (however in our description we will continue

to use the conventions of Ref. [28] and we will treat the behavior near ~K and ~K ′ separately).

We start using a simple tight-binding model, in which we consider, as atomic wave function for each of
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the two atoms (A and B) of the graphene unit cell, only the 2pz orbital, which is the orbital responsible

for the π-bondings and thus for the above-mentioned two π-bands. In this case the generic eigenfunction

in the solid can be expressed [29] as a linear combination (with coefficients Cj functions of ~k) of the

two functions obtained summing the 2pz atomic wave functions ϕ centered on each j-like atom (with

j = A,B) and weighted by a phase factor ei~k·~Rj (note that 1/
√
NΩ is the normalization factor, with NΩ

the number of unit cells):

ψ(~r) =
∑

j=A,B

Cj(~k)





1√
NΩ

NΩ
∑

~Rj

ei~k·~Rjϕ(~r − ~Rj)



 =

=
∑

j=A,B

∑

~Rj

[

Cj(~k)
1√
NΩ

ei~k·~Rj

]

ϕ(~r − ~Rj) =

=
∑

j=A,B

∑

~Rj

ψj(~Rj)ϕ(~r − ~Rj) =
∑

~RA

ψA(~RA)ϕ(~r − ~RA) +
∑

~RB

ψB(~RB)ϕ(~r − ~RB) , (5.93)

where we have defined ψj(~Rj) (with j = A,B) as the quantity between square brackets. Using the

definition of the Hamiltonian operator

H|ψ〉 = E|ψ〉 (5.94)

we have that

〈ψ|H|ψ〉 = E〈ψ|ψ〉 (5.95)

and thus

E(~k) =
〈ψ|H|ψ〉
〈ψ|ψ〉 =

=

〈

∑

j=A,B

∑

~Rj

ψj(~Rj)ϕ(~r − ~Rj)

∣

∣

∣

∣

∣

H

∣

∣

∣

∣

∣

∑

j′=A,B

∑

~Rj′

ψj′(~Rj′)ϕ(~r − ~Rj′)

〉

〈

∑

j=A,B

∑

~Rj

ψj(~Rj)ϕ(~r − ~Rj)

∣

∣

∣

∣

∣

∑

j′=A,B

∑

~Rj′

ψj′(~Rj′)ϕ(~r − ~Rj′)

〉 =

=

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)〈ϕ(~r − ~Rj)|H|ϕ(~r − ~Rj′)〉

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)〈ϕ(~r − ~Rj)|ϕ(~r − ~Rj′)〉
=

=

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)hjj′

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)sjj′

(5.96)

where we have introduced the transfer integrals hjj′ and the overlap integrals sjj′ between atomic wave

functions. When we set these values for a given ~k value, we can minimize E(~k) (to obtain the actual
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physical state) enforcing (for both j = A and j = B):

∂E(~k)

∂ψj(~Rj)
=

∑

j′=A,B

∑

~Rj′

ψj′(~Rj′)hjj′

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)sjj′

−

−

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)hjj′

(

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)sjj′

)2

∑

j′=A,B

∑

~Rj′

ψj′(~Rj′)sjj′ = 0 . (5.97)

Multiplying both members by the appropriate quantity and rearranging, we find:

∑

j′=A,B

∑

~Rj′

ψj′(~Rj′)hjj′ =

=

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)hjj′

∑

j,j′=A,B

∑

~Rj

∑

~Rj′

ψj(~Rj)ψj′(~Rj′)sjj′

∑

j′=A,B

∑

~Rj′

ψj′(~Rj′)sjj′ (5.98)

and recognizing in the right-hand side the expression of E(~k):

∑

j′=A,B

∑

~Rj′

ψj′(~Rj′)hjj′ = E(~k)
∑

j′=A,B

∑

~Rj′

ψj′(~Rj′)sjj′ with j = A,B. (5.99)

Expanding what we have found for j = A and j = B we find:































∑

~RA

ψA(~RA)hAA+
∑

~RB

ψB(~RB)hAB =E





∑

~RA

ψA(~RA)sAA+
∑

~RB

ψB(~RB)sAB





∑

~RA

ψA(~RA)hBA+
∑

~RB

ψB(~RB)hBB =E





∑

~RA

ψA(~RA)sBA+
∑

~RB

ψB(~RB)sBB





.

(5.100)

If we consider non negligible only the integrals between each atom and itself and its nearest neighbors

(which for an A atom are the nearest three B atoms, while for a B atom are the nearest three A atoms),

we can reduce to:























ψA(~RA)hAA+

3
∑

l=1

ψB(~RBl
)hABl

=E

(

ψA(~RA)sAA+

3
∑

l=1

ψB(~RBl
)sABl

)

3
∑

l=1

ψA(~RAl
)hBAl

+ψB(~RB)hBB =E

(

3
∑

l=1

ψA(~RAl
)sBAl

+ψB(~RB)sBB

) . (5.101)
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In particular we consider:

hjj′ =

{

εj = 0 if j = j′

−γ0 if j 6= j′
; sjj′ = δjj′ (5.102)

(where εj is the orbital energy of the 2pz level, that we take as zero of the energy, and γ0 is the modulus

of the nearest neighbor transfer integral). Thus the tight-binding relations become:























−γ0

3
∑

l=1

ψB(~RBl
) = E ψA(~RA)

−γ0

3
∑

l=1

ψA(~RAl
) = E ψB(~RB)

. (5.103)

If we introduce the vectors (Fig. 5.4(a)):
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

(5.104)

we can write the positions of the nearest-neighbor atoms in this way:

~RB1
= ~RA − ~τ1

~RB2
= ~RA − ~τ2

~RB3
= ~RA − ~τ3

~RA1
= ~RB + ~τ1

~RA2
= ~RB + ~τ2

~RA3
= ~RB + ~τ3 (5.105)

and thus we can rewrite the tight-binding relations in the following form:























−γ0

3
∑

l=1

ψB(~RA − ~τl) = E ψA(~RA)

−γ0

3
∑

l=1

ψA(~RB + ~τl) = E ψB(~RB)

. (5.106)

Now let us consider what happens near the points ~K and ~K ′. It is important to notice that all the results

we will obtain are true also if we consider (instead of ~K and ~K ′) points of the reciprocal space equivalent

to ~K and ~K ′, which are obtained adding to ~K and ~K ′ a linear combination with integer coefficients of

the reciprocal space unit vectors ~b1 and ~b2.

Near the point ~K it is useful to rewrite the tight-binding expression of the wave function in the following
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way:

ψ(~r) =
∑

j=A,B

Cj(~k)





1√
NΩ

NΩ
∑

~Rj

ei~k·~Rjϕ(~r − ~Rj)



 =

=
∑

j=A,B

∑

~Rj

{[

Cj(~k)
1√
NΩ

ei(~k− ~K)·~Rj

]

ei ~K·~Rj

}

ϕ(~r − ~Rj) =

=
∑

j=A,B

∑

~Rj

{[

Cj(~k)
1√
NΩ

ei~κ·~Rj

]

ei ~K·~Rj

}

ϕ(~r − ~Rj) =

=
∑

j=A,B

∑

~Rj

{

F̃
~K

j (~Rj)ei ~K·~Rj

}

ϕ(~r − ~Rj) =

=
∑

~RA

{

F̃
~K

A (~RA)ei ~K·~RA

}

ϕ(~r − ~RA) +
∑

~RB

{

F̃
~K

B (~RB)ei ~K·~RB

}

ϕ(~r − ~RB) =

=
∑

~RA

ψA(~RA)ϕ(~r − ~RA) +
∑

~RB

ψB(~RB)ϕ(~r − ~RB) . (5.107)

We notice that F̃
~K

j (~r), defined as Cj(~k)(1/
√
NΩ)ei~κ·~r (with ~κ = ~k− ~K), for ~k near ~K (and thus for small

~κ) is a slowly-varying function of ~r. Incidentally, for ~k near ~K we can write that

ψ(~r) =
∑

i=A,B

∑

~Ri

F̃
~K

i (~Ri) e
i ~K·~Riϕ(~r − ~Ri) '

∑

i=A,B

∑

~Ri

F̃
~K

i (~r) ei ~K·~Riϕ(~r − ~Ri) =

=
∑

i=A,B

F̃
~K

i (~r)ei ~K·~r





∑

~Ri

ϕ(~r − ~Ri) e
−i ~K·(~r−~Ri)



 =
∑

i=A,B

F̃
~K

i (~r) ei ~K·~r ũi
~K

(~r) (5.108)

(where we have substituted F̃
~K

i (~r) to F̃
~K

i (~Ri) using the fact that F̃
~K

i is a slowly-varying function of ~r,

while ϕ is a function concentrated around the atom position). Since the quantity between square brackets

(that we have called here ũi
~K

) is periodic with the periodicity of the lattice and ~K is an extremum point

(different from ~0) of the dispersion relations, from the relation between ψ(~r), ũi
~K

(~r) and F̃
~K

i (~r) we see

that F̃
~K

i can be seen as the electron envelope function corresponding to the extremum point ~K.

To simplify the notation we can define the quantity ω = ei 2π
3 , which satisfies the relations:

1 + ω + ω−1 = 0

1 + ω = −ω−1

1 − ω = i
√

3ω−1

1 − ω−1 = −i
√

3ω

ω − ω−1 = i
√

3 . (5.109)
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To obtain a simpler final result we can introduce the slightly modified functions:

{

F
~K

A (~RA) = F̃
~K

A (~RA)

F
~K

B (~RB) = −iωe−iθ′

F̃
~K

B (~RB)
(5.110)

(with θ′ a properly chosen angle, as we will see). Consequently we can write that

ψ(~r) =
∑

~RA

{

F
~K

A (~RA)ei ~K·~RA

}

ϕ(~r − ~RA) +

+
∑

~RB

{(

−ω
−1

i
eiθ′

F
~K

B (~RB)

)

ei ~K·~RB

}

ϕ(~r − ~RB) =

=
∑

~RA

ψA(~RA)ϕ(~r − ~RA) +
∑

~RB

ψB(~RB)ϕ(~r − ~RB) (5.111)

and thus that






ψA(~RA) = ei ~K·~RAF
~K

A (~RA)

ψB(~RB) = −ω
−1

i
eiθ′

ei ~K·~RBF
~K

B (~RB)
. (5.112)

If we introduce these equivalences into the tight-binding equations:















E ψA(~RA) = −γ0

∑

l

ψB(~RA − ~τl)

E ψB(~RB) = −γ0

∑

l

ψA(~RB + ~τl)
(5.113)

we find



















E
(

ei ~K·~RAF
~K

A (~RA)
)

= −γ0

∑

l

(

−ω
−1

i
eiθ′

ei ~K·(~RA−~τl)F
~K

B (~RA − ~τl)

)

E

(

−ω
−1

i
eiθ′

ei ~K·~RBF
~K

B (~RB)

)

= −γ0

∑

l

(

ei ~K·(~RB+~τl)F
~K

A (~RB + ~τl)
)

. (5.114)

We can introduce a smoothing function g(~r) which varies smoothly in the range |~r| ∼ a, decays rapidly

for |~r| � a and satisfies the conditions

∑

~RA

g(~r − ~RA) =
∑

~RB

g(~r − ~RB) = 1 (5.115)

and
∫

d~r g(~r − ~RA) =

∫

d~r g(~r − ~RB) = Ω0 , (5.116)

where Ω0 is the area of a graphene unit cell, equal to Ω0 =
√

3a2/2. When this function is multiplied by

a generic smooth function f(~r) (like the functions F before defined) clearly we have that

f(~r)g(~r − ~R) ' f(~R)g(~r − ~R) . (5.117)
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If we multiply the first tight-binding equation by g(~r − ~RA)e−i ~K·~RA and we sum it over ~RA we find

E
∑

~RA

g(~r − ~RA)F
~K

A (~RA) = −γ0

∑

l

(

−ω
−1

i
eiθ′

e−i ~K·~τl

)

∑

~RA

g(~r − ~RA)F
~K

B (~RA − ~τl)

(5.118)

and, using the last property of the function g,

E





∑

~RA

g(~r − ~RA)



F
~K

A (~r) = γ0
ω−1

i
eiθ′

∑

l

e−i ~K·~τl





∑

~RA

g(~r − ~RA)



F
~K

B (~r − ~τl) .

(5.119)

Using the first property of the function g and then expanding the smooth quantity F
~K

B (~r−~τl) to the first

order in ~τl we can write:

E F
~K

A (~r) = γ0
ω−1

i
eiθ′

∑

l

e−i ~K·~τlF
~K

B (~r − ~τl) '

' γ0
ω−1

i
eiθ′

∑

l

e−i ~K·~τl

[

F
~K

B (~r) −
(

~τl ·
∂

∂~r

)

F
~K

B (~r)

]

=

= γ0
ω−1

i
eiθ′

{(

∑

l

e−i ~K·~τl

)

F
~K

B (~r) −
[

∑

l

e−i ~K·~τl

(

~τl ·
∂

∂~r

)

]

F
~K

B (~r)

}

. (5.120)

Let us now calculate the value of the sums which appear in the previous expression:

∑

l

e−i ~K·~τl = e−i(− 2π
3 ) + e−i 2π

3 ( 1
2−

1
2 ) + e−i 2π

3 ( 1
2+ 1

2 ) = ω + 1 + ω−1 = 0 ;

∑

l

e−i ~K·~τl

(

~τl ·
∂

∂~r

)

=

= ω
a√
3

(

− ∂

∂x′

)

+ 1
a√
3

(

1

2

∂

∂x′
−

√
3

2

∂

∂y′

)

+ ω−1 a√
3

(

1

2

∂

∂x′
+

√
3

2

∂

∂y′

)

=

=
a√
3

(

(

−ω +
1

2
+

1

2
ω−1

)

∂

∂x′
+

(

−
√

3

2
+

√
3

2
ω−1

)

∂

∂y′

)

. (5.121)

For the properties of the quantity ω we have that

−ω +
1

2
+

1

2
ω−1 = −ω +

1

2
(1 + ω−1) = −ω − 1

2
ω = −3

2
ω (5.122)

and

−
√

3

2
+

√
3

2
ω−1 = −

√
3

2
(1 − ω−1) = i

3

2
ω , (5.123)
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thus

∑

l

e−i ~K·~τl

(

~τl ·
∂

∂~r

)

= − a√
3

3

2
ω

(

∂

∂x′
− i

∂

∂y′

)

=

= −
√

3

2
aω(iκx′ + κy′) = −i

√
3

2
aω(κx′ − iκy′) , (5.124)

where we have used the fact that F
~K

j (~r) ∝ ei~κ·~r and therefore

−i ∂
∂x′

F
~K

j (~r) = κx′F
~K

j (~r) and − i
∂

∂y′
F

~K
j (~r) = κy′F

~K
j (~r) . (5.125)

Substituting such results, we find that

E F
~K

A (~r) = γ0
ω−1

i
eiθ′

i

√
3

2
aω(κx′ − iκy′)F

~K
B (~r) =

=

√
3

2
γ0a(κx − iκy)F

~K
B (~r) = γ(κx − iκy)F

~K
B (~r) , (5.126)

where we have passed from the original reference frame (x′, y′) to a new frame (x, y), rotated around the

origin by an angle θ′ with respect to the original one (Fig. 5.6) and we have used the fact that

eiθ′

(κx′ − iκy′) = (cos θ′ + i sin θ′)(κx′ − iκy′) =

= (cos θ′κx′ + sin θ′κy′) − i(cos θ′κy′ − sin θ′κx′) = κx − iκy (5.127)

(due to the relations between old and new coordinates). We have also defined the quantity γ = (
√

3/2)γ0a.

Then we can multiply by g(~r − ~RB)(−i ω e−iθ′

e−i ~K·~RB ) the second tight-binding equation, sum it over

~RB and proceed in an analogous way:

E
∑

~RB

g(~r − ~RB)F
~K

B (~RB) = −γ0

∑

l

(

−iωe−iθ′

ei ~K·~τl

)

∑

~RB

g(~r − ~RB)F
~K

A (~RB + ~τl) ;

E





∑

~RB

g(~r − ~RB)



F
~K

B (~r) = γ0iωe
−iθ′

∑

l

ei ~K·~τl





∑

~RB

g(~r − ~RB)



F
~K

A (~r + ~τl) ;

EF
~K

B (~r) = γ0iωe
−iθ′

∑

l

ei ~K·~τlF
~K

A (~r + ~τl) '

' γ0iωe
−iθ′

∑

l

ei ~K·~τl

[

F
~K

A (~r) +

(

~τl ·
∂

∂~r

)

F
~K

A (~r)

]

=

= γ0iωe
−iθ′

{(

∑

l

ei ~K·~τl

)

F
~K

A (~r) +

[

∑

l

ei ~K·~τl

(

~τl ·
∂

∂~r

)

]

F
~K

A (~r)

}

. (5.128)
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Figure 5.6: The reference frames used in the calculations.

In this case the values of the sums which appear in the equations are:

∑

l

ei ~K·~τl = ei(− 2π
3 ) + ei 2π

3 ( 1
2−

1
2 ) + ei 2π

3 ( 1
2+ 1

2 ) = ω−1 + 1 + ω = 0 ;

∑

l

ei ~K·~τl

(

~τl ·
∂

∂~r

)

=

= ω−1 a√
3

(

− ∂

∂x′

)

+ 1
a√
3

(

1

2

∂

∂x′
−

√
3

2

∂

∂y′

)

+ ω
a√
3

(

1

2

∂

∂x′
+

√
3

2

∂

∂y′

)

=

=
a√
3

(

(

−ω−1 +
1

2
+

1

2
ω

)

∂

∂x′
+

(

−
√

3

2
+

√
3

2
ω

)

∂

∂y′

)

, (5.129)

which, being

−ω−1 +
1

2
+

1

2
ω = −ω−1 +

1

2
(1 + ω) = −ω−1 − 1

2
ω−1 = −3

2
ω−1 (5.130)

and

−
√

3

2
+

√
3

2
ω = −

√
3

2
(1 − ω) = −i3

2
ω−1 , (5.131)

becomes

∑

l

ei ~K·~τl

(

~τl ·
∂

∂~r

)

= − a√
3

3

2
ω−1

(

∂

∂x′
+ i

∂

∂y′

)

=

= −
√

3

2
aω−1(iκx′ − κy′) = −i

√
3

2
aω−1(κx′ + iκy′) . (5.132)



120 The ~k · ~p method.

Substituting these values, we find:

E F
~K

B (~r) = γ0ωe
−iθ′

√
3

2
aω−1(κx′ + iκy′)F

~K
A (~r) =

=

√
3

2
γ0a(κx + iκy)F

~K
A (~r) = γ(κx + iκy)F

~K
A (~r) , (5.133)

where we have made use of the relation

e−iθ′

(κx′ + iκy′) = (cos θ′ − i sin θ′)(κx′ + iκy′) =

= (cos θ′κx′ + sin θ′κy′) + i(cos θ′κy′ − sin θ′κx′) = κx + iκy . (5.134)

In conclusion, we have found near ~K the equations:

{

E F
~K

A (~r) = γ(κx − iκy)F
~K

B (~r)

E F
~K

B (~r) = γ(κx + iκy)F
~K

A (~r)
, (5.135)

which can also be written in matrix form as:

[

0 γ(κx − iκy)

γ(κx + iκy) 0

][

F
~K

A (~r)

F
~K

B (~r)

]

= E

[

F
~K

A (~r)

F
~K

B (~r)

]

(5.136)

or (using the Pauli spin matrices)

γ(κxσx + κyσy)~F
~K(~r) = γ(~κ · ~σ) ~F

~K(~r) = E ~F
~K(~r) . (5.137)

In this way we have obtained the ~k · ~p Hamiltonian matrix which has as eigenvalues the dispersion

relations of the two degenerate energy bands E
~K
s (~κ) and as eigenvectors the correspondent electron

envelope functions F
~K

s~κ(~r).

In particular if we enforce

det

{[

0 γ(κx − iκy)

γ(κx + iκy) 0

]

− E

[

1 0

0 1

]}

= 0 (5.138)

we find the dispersion relations

E
~K
s (~κ) = sγ|~κ| , (5.139)

where s can assume the values +1 or −1.

If we define the angle α in such a way that

κx + iκy = |~κ|ei( π
2 +α) (5.140)
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and thus

κx − iκy = (κx + iκy)∗ = |~κ|ei(−π
2−α) (5.141)

we have that the correspondent envelope functions are

~F
~K

s~κ(~r) =
1√
Σ
ei~κ·~rF

~K
s~κ (5.142)

with

~F
~K

s~κ = eiφs(~κ)R(−α(~κ))|s〉 (5.143)

and

|s〉 =
1√
2

[

−is
1

]

, (5.144)

where Σ is the considered surface area, φs(~κ) is an arbitrary phase factor and R(α) is given by

R(α) =

[

ei α
2 0

0 e−i α
2

]

. (5.145)

This can be easily verified noting that

γ

[

0 κx − iκy

κx + iκy 0

]

~F
~K

s~κ(~r) = γ

[

0 |~κ|ei(−π
2−α)

|~κ|ei( π
2 +α) 0

]

~F
~K

s~κ(~r) =

= γ

[

0 −i|~κ|e−iα

i|~κ|eiα 0

](

1√
Σ
ei~κ·~reiφs

[

e−i α
2 0

0 ei α
2

]

1√
2

[

−is
1

])

=

=
1√
2Σ

γei~κ·~reiφs

[

0 −i|~κ|e−i α
2

i|~κ|ei α
2 0

][

−is
1

]

=
1√
2Σ

γei(~κ·~r+φs)

[

−i|~κ|e−i α
2

|~κ|sei α
2

]

(5.146)

and also

E
~K
s
~F

~K
s~κ(~r) = sγ|~κ|

(

1√
Σ
ei~κ·~reiφs

[

e−i α
2 0

0 ei α
2

]

1√
2

[

−is
1

])

=

= sγ|~κ| 1√
2Σ

ei(~κ·~r+φs)

[

−ise−i α
2

ei α
2

]

=
1√
2Σ

γei(~κ·~r+φs)

[

−is2|~κ|e−i α
2

|~κ|sei α
2

]

=

=
1√
2Σ

γei(~κ·~r+φs)

[

−i|~κ|e−i α
2

|~κ|sei α
2

]

(5.147)

(where we have used the fact that s2 = (±1)2 = 1 ). From these functions F
~K

A and F
~K

B then we can find

the functions ψA and ψB and thus the electron wave function ψ, using the previously written relations.

Now we can perform similar calculations near the point ~K ′. In particular we can rewrite the tight-binding
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expression of the wave function in this way:

ψ(~r) =
∑

j=A,B

Cj(~k)





1√
NΩ

NΩ
∑

~Rj

ei~k·~Rjϕ(~r − ~Rj)



 =

=
∑

j=A,B

∑

~Rj

{[

Cj(~k)
1√
NΩ

ei(~k− ~K′)·~Rj

]

ei ~K′·~Rj

}

ϕ(~r − ~Rj) =

=
∑

j=A,B

∑

~Rj

{[

Cj(~k)
1√
NΩ

ei~κ·~Rj

]

ei ~K′·~Rj

}

ϕ(~r − ~Rj) =

=
∑

j=A,B

∑

~Rj

{

F̃
~K′

j (~Rj)ei ~K′·~Rj

}

ϕ(~r − ~Rj) =

=
∑

~RA

{

F̃
~K′

A (~RA)ei ~K′·~RA

}

ϕ(~r − ~RA) +
∑

~RB

{

F̃
~K′

B (~RB)ei ~K′·~RB

}

ϕ(~r − ~RB) =

=
∑

~RA

ψA(~RA)ϕ(~r − ~RA) +
∑

~RB

ψB(~RB)ϕ(~r − ~RB) (5.148)

where we notice that now κ = ~k − ~K ′.

Then we introduce the functions:

{

F
~K′

A (~RA) = iω−1e−iθ′

F̃
~K′

A (~RA)

F
~K′

B (~RB) = F̃
~K′

B (~RB)
, (5.149)

so that we can write that

ψ(~r) =
∑

~RA

{(ω

i
eiθ′
)

F
~K′

A (~RA)ei ~K′·~RA

}

ϕ(~r − ~RA) +

+
∑

~RB

{

F
~K′

B (~RB)ei ~K′·~RB

}

ϕ(~r − ~RB) =

=
∑

~RA

ψA(~RA)ϕ(~r − ~RA) +
∑

~RB

ψB(~RB)ϕ(~r − ~RB) (5.150)

and thus that






ψA(~RA) =
ω

i
eiθ′

ei ~K′·~RAF
~K′

A (~RA)

ψB(~RB) = ei ~K′·~RBF
~K′

B (~RB)
. (5.151)

Introducing these expressions into the tight-binding equations:















E ψA(~RA) = −γ0

∑

l

ψB(~RA − ~τl)

E ψB(~RB) = −γ0

∑

l

ψA(~RB + ~τl)
(5.152)
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we find














E
(ω

i
eiθ′

ei ~K′·~RAF
~K′

A (~RA)
)

= −γ0

∑

l

(

ei ~K′·(~RA−~τl)F
~K′

B (~RA − ~τl)
)

E
(

ei ~K′·~RBF
~K′

B (~RB)
)

= −γ0

∑

l

(ω

i
eiθ′

ei ~K′·(~RB+~τl)F
~K′

A (~RB + ~τl)
) . (5.153)

If we multiply the first equation by g(~r − ~RA)
(

iω−1e−iθ′

e−i ~K′·~RA

)

and we sum it over ~RA we obtain

(proceeding in a similar way to what we have done near the point ~K):

E
∑

~RA

g(~r − ~RA)F
~K′

A (~RA)=−γ0

∑

l

(

iω−1e−iθ′

e−i ~K′·~τl

)

∑

~RA

g(~r − ~RA)F
~K′

B (~RA − ~τl) ;

E





∑

~RA

g(~r − ~RA)



F
~K′

A (~r) = −γ0iω
−1e−iθ′

∑

l

e−i ~K′·~τl





∑

~RA

g(~r − ~RA)



F
~K′

B (~r − ~τl) ;

E F
~K′

A (~r)=−γ0iω
−1e−iθ′

∑

l

e−i ~K′·~τlF
~K′

B (~r − ~τl) '

' −γ0iω
−1e−iθ′

∑

l

e−i ~K′·~τl

[

F
~K′

B (~r) −
(

~τl ·
∂

∂~r

)

F
~K′

B (~r)

]

=

= −γ0iω
−1e−iθ′

{(

∑

l

e−i ~K′·~τl

)

F
~K′

B (~r) −
[

∑

l

e−i ~K′·~τl

(

~τl ·
∂

∂~r

)

]

F
~K′

B (~r)

}

. (5.154)

The values of the sums which appear in the previous expression are:

∑

l

e−i ~K′·~τl = e−i(− 2π
3 ) + e−i 2π

3 ( 1
2+ 1

2 ) + e−i 2π
3 ( 1

2−
1
2 ) = ω + ω−1 + 1 = 0 ;

∑

l

e−i ~K′·~τl

(

~τl ·
∂

∂~r

)

=

= ω
a√
3

(

− ∂

∂x′

)

+ ω−1 a√
3

(

1

2

∂

∂x′
−

√
3

2

∂

∂y′

)

+ 1
a√
3

(

1

2

∂

∂x′
+

√
3

2

∂

∂y′

)

=

=
a√
3

(

(

−ω +
1

2
ω−1 +

1

2

)

∂

∂x′
+

(

−
√

3

2
ω−1 +

√
3

2

)

∂

∂y′

)

. (5.155)

In particular, being

−ω +
1

2
ω−1 +

1

2
= −ω +

1

2
(1 + ω−1) = −ω − 1

2
ω = −3

2
ω (5.156)

and

−
√

3

2
ω−1 +

√
3

2
=

√
3

2
(1 − ω−1) = −i3

2
ω (5.157)
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we have that

∑

l

e−i ~K′·~τl

(

~τl ·
∂

∂~r

)

= − a√
3

3

2
ω

(

∂

∂x′
+ i

∂

∂y′

)

=

= −
√

3

2
aω(iκx′ − κy′) = −i

√
3

2
aω(κx′ + iκy′) , (5.158)

where we have used the fact that F
~K′

j (~r) ∝ ei~κ·~r and thus

−i ∂
∂x′

F
~K′

j (~r) = κx′F
~K′

j (~r) and − i
∂

∂y′
F

~K′

j (~r) = κy′F
~K′

j (~r) . (5.159)

Substituting such results, we find that

E F
~K′

A (~r) = γ0ω
−1e−iθ′

√
3

2
aω(κx′ + iκy′)F

~K′

B (~r) =

=

√
3

2
γ0a(κx + iκy)F

~K′

B (~r) = γ(κx + iκy)F
~K′

B (~r) , (5.160)

where we have made the same change of reference frame and we have used the fact that (as we have

already seen) e−iθ′

(κx′ + iκy′) = κx + iκy .

If we multiply the second tight-binding equation by g(~r− ~RB)e−i ~K′·~RB , we sum over ~RB and we proceed

analogously, we can rewrite it in the following way:

E
∑

~RB

g(~r − ~RB)F
~K′

B (~RB) = −γ0

∑

l

(ω

i
eiθ′

ei ~K′·~τl

)

∑

~RB

g(~r − ~RB)F
~K′

A (~RB + ~τl) ;

E





∑

~RB

g(~r − ~RB)



F
~K′

B (~r) = −γ0
ω

i
eiθ′

∑

l

ei ~K′·~τl





∑

~RB

g(~r − ~RB)



F
~K′

A (~r + ~τl) ;

EF
~K′

B (~r) = −γ0
ω

i
eiθ′

∑

l

ei ~K′·~τlF
~K′

A (~r + ~τl) '

' −γ0
ω

i
eiθ′

∑

l

ei ~K′·~τl

[

F
~K′

A (~r) +

(

~τl ·
∂

∂~r

)

F
~K′

A (~r)

]

=

= −γ0
ω

i
eiθ′

{(

∑

l

ei ~K′·~τl

)

F
~K′

A (~r) +

[

∑

l

ei ~K′·~τl

(

~τl ·
∂

∂~r

)

]

F
~K′

A (~r)

}

. (5.161)
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In this case the values of the sums are:

∑

l

ei ~K′·~τl = ei(− 2π
3 ) + ei 2π

3 ( 1
2+ 1

2 ) + ei 2π
3 ( 1

2−
1
2 ) = ω−1 + ω + 1 = 0 ;

∑

l

ei ~K′·~τl

(

~τl ·
∂

∂~r

)

=

= ω−1 a√
3

(

− ∂

∂x′

)

+ ω
a√
3

(

1

2

∂

∂x′
−

√
3

2

∂

∂y′

)

+ 1
a√
3

(

1

2

∂

∂x′
+

√
3

2

∂

∂y′

)

=

=
a√
3

(

(

−ω−1 +
1

2
ω +

1

2

)

∂

∂x′
+

(

−
√

3

2
ω +

√
3

2

)

∂

∂y′

)

, (5.162)

which, being

−ω−1 +
1

2
ω +

1

2
= −ω−1 +

1

2
(1 + ω) = −ω−1 − 1

2
ω−1 = −3

2
ω−1 (5.163)

and

−
√

3

2
ω +

√
3

2
=

√
3

2
(1 − ω) = i

3

2
ω−1 , (5.164)

becomes

∑

l

ei ~K′·~τl

(

~τl ·
∂

∂~r

)

= − a√
3

3

2
ω−1

(

∂

∂x′
− i

∂

∂y′

)

=

= −
√

3

2
aω−1(iκx′ + κy′) = −i

√
3

2
aω−1(κx′ − iκy′) . (5.165)

Substituting the found values, we find:

E F
~K′

B (~r) = γ0
ω

i
eiθ′

i

√
3

2
aω−1(κx′ − iκy′)F

~K′

A (~r) =

=

√
3

2
γ0a(κx − iκy)F

~K′

A (~r) = γ(κx − iκy)F
~K′

A (~r) , (5.166)

where we used the previously found relation eiθ′

(κx′ − iκy′) = κx − iκy .

Therefore the equations we have found near K ′ are:

{

E F
~K′

A (~r) = γ(κx + iκy)F
~K′

B (~r)

E F
~K′

B (~r) = γ(κx − iκy)F
~K′

A (~r)
(5.167)

which can be written in matrix form:

[

0 γ(κx + iκy)

γ(κx − iκy) 0

][

F
~K′

A (~r)

F
~K′

B (~r)

]

= E

[

F
~K′

A (~r)

F
~K′

B (~r)

]

(5.168)
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or equivalently (using the Pauli spin matrices):

γ(κxσx − κyσy)~F
~K′

(~r) = γ

















κx

−κy

0









· ~σ









~F
~K′

(~r) = E ~F
~K′

(~r) . (5.169)

If we enforce

det

{[

0 γ(κx + iκy)

γ(κx − iκy) 0

]

− E

[

1 0

0 1

]}

= 0 (5.170)

we find the dispersion relations

E
~K′

s (~κ) = sγ|~κ| , (5.171)

where s can assume the values +1 or −1.

The correspondent envelope functions are

~F
~K′

s~κ (~r) =
1√
Σ
ei~κ·~r ~F

~K′

s~κ (5.172)

with

~F
~K′

s~κ = eiφs(~κ)R(α(~κ))|s〉 (5.173)

(φs(~κ) is an arbitrary phase factor) and

|s〉 =
1√
2

[

is

1

]

. (5.174)

This result is easily verified noting that

γ

[

0 κx + iκy

κx − iκy 0

]

~F
~K′

s~κ (~r) = γ

[

0 |~κ|ei( π
2 +α)

|~κ|ei(−π
2−α) 0

]

~F
~K′

s~κ (~r) =

= γ

[

0 i|~κ|eiα

−i|~κ|e−iα 0

](

1√
Σ
ei~κ·~reiφs

[

ei α
2 0

0 e−i α
2

]

1√
2

[

is

1

])

=

=
1√
2Σ

γei~κ·~reiφs

[

0 i|~κ|ei α
2

−i|~κ|e−i α
2 0

][

is

1

]

=
1√
2Σ

γei(~κ·~r+φs)

[

i|~κ|ei α
2

|~κ|se−i α
2

]

(5.175)
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and that also

E
~K′

s
~F

~K′

s~κ (~r) = sγ|~κ|
(

1√
Σ
ei~κ·~reiφs

[

ei α
2 0

0 e−i α
2

]

1√
2

[

is

1

])

=

= sγ|~κ| 1√
2Σ

ei(~κ·~r+φs)

[

isei α
2

e−i α
2

]

=
1√
2Σ

γei(~κ·~r+φs)

[

is2|~κ|ei α
2

|~κ|se−i α
2

]

=

=
1√
2Σ

γei(~κ·~r+φs)

[

i|~κ|ei α
2

|~κ|se−i α
2

]

. (5.176)

We notice that the energy dispersion relations that we have found in this way near ~K and ~K ′ are identical

to those that one can obtain calculating the dispersion relations with the nearest-neighbor tight-binding

technique and then expanding them near the extrema points.

As we have said, a single-wall carbon nanotube can be obtained rolling a monoatomic layer of graphite to

form a cylinder. In particular it is completely specified by the chiral vector ~Ch, which corresponds to a

section of the nanotube perpendicular to the nanotube axis and thus has a length equal to the nanotube

circumference and connects two points of the graphite sheet which coincide in the nanotube. This vector

can be expressed as a linear combination of the real space unit vectors of the graphene with integer

coefficients n and m:

~Ch = n~a1 +m~a2 = na













√
3

2
1

2

0













+ma













√
3

2

−1

2

0













= a













√
3

2
(n+m)

1

2
(n−m)

0













. (5.177)

The correspondent carbon nanotube will be indicated as (n,m).

If we define the chiral angle of the nanotube θ (with −π/6 < θ ≤ π/6, due to the hexagonal symmetry of

graphene lattice) as the angle (positive in the clockwise direction) between ~a1 and ~Ch (or equivalently as

the tilt angle of the edges of the hexagons constituting the graphite sheet with respect to the direction

of the nanotube axis), it can be found from the values of n and m noting that

cos θ =
~Ch · ~a1

| ~Ch||~a1|
=

2n+m

2
√
n2 +m2 + nm

(5.178)

and

sin θ =
( ~Ch × ~a1) · ẑ′

| ~Ch||~a1|
=

√
3m

2
√
n2 +m2 + nm

, (5.179)

where ẑ′ is chosen in such a way to form a right-hand reference frame (x̂′, ŷ′, ẑ′) with the unit vectors x̂′

and ŷ′ which identify the frame already used in the calculations on graphene. In the successive expressions

we will identify the previously introduced angle θ′ with θ′ = (π/6)− θ (the angle between ~Ch and x̂′), as

shown in Fig. 5.6, and thus we will take x̂ parallel to ~Ch.

To find the dispersion relations and the electron wave functions of a carbon nanotube from the ones of
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graphite, we have to enforce for the electron wave function the periodic boundary condition:

ψ(~r + ~Ch) = ψ(~r) . (5.180)

Remembering that using the tight-binding technique the electron wave function can be expressed as

ψ(~r) =
∑

~RA

ψA(~RA)ϕ(~r − ~RA) +
∑

~RB

ψB(~RB)ϕ(~r − ~RB) (5.181)

the boundary condition can be written

ψ(~r + ~Ch) =
∑

~RA

ψA(~RA)ϕ((~r + ~Ch) − ~RA) +
∑

~RB

ψB(~RB)ϕ((~r + ~Ch) − ~RB) =

=
∑

~RA

ψA(~RA)ϕ(~r − (~RA − ~Ch)) +
∑

~RB

ψB(~RB)ϕ(~r − (~RB − ~Ch)) =

=
∑

~RA

ψA((~RA − ~Ch) + ~Ch)ϕ(~r − (~RA − ~Ch)) +
∑

~RB

ψB((~RB − ~Ch) + ~Ch)ϕ(~r − (~RB − ~Ch))=

=
∑

~R∗
A

ψA(~R∗A + ~Ch)ϕ(~r − ~R∗A) +
∑

~R∗
B

ψB(~R∗B + ~Ch)ϕ(~r − ~R∗B) =

= ψ(~r) =
∑

~R∗
A

ψA(~R∗A)ϕ(~r − ~R∗A) +
∑

~R∗
B

ψB(~R∗B)ϕ(~r − ~R∗B) (5.182)

(where we have used the fact that, being ~Ch a linear combination with integer coefficients of the real

space lattice unit vectors, also ~RA− ~Ch and ~RB− ~Ch are atom positions ~R∗A and ~R∗B). Thus the boundary

condition is equivalent to the two conditions:

{

ψA(~R∗A + ~Ch) = ψA(~R∗A)

ψB(~R∗B + ~Ch) = ψB(~R∗B)
. (5.183)

If we enforce these two conditions for the expressions of ψA(~r) and ψB(~r) that we have previously used

near ~K, we have







ei ~K·(~RA+~Ch)F
~K

A (~RA + ~Ch) = ei ~K·~RAF
~K

A (~RA)

−ω
−1

i
eiθ′

ei ~K·(~RB+~Ch)F
~K

B (~RB + ~Ch) = −ω
−1

i
eiθ′

ei ~K·~RBF
~K

B (~RB)
. (5.184)
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Multiplying the first equation by g(~r − ~RA)e−i ~K·~RA , summing it over ~RA and then using the properties

of the function g, we find:

∑

~RA

g(~r − ~RA)ei ~K·~ChF
~K

A (~RA + ~Ch) =
∑

~RA

g(~r − ~RA)F
~K

A (~RA) ;

ei ~K·~Ch





∑

~RA

g(~r − ~RA)



F
~K

A (~r + ~Ch) =





∑

~RA

g(~r − ~RA)



F
~K

A (~r) ;

ei ~K·~ChF
~K

A (~r + ~Ch) = F
~K

A (~r) . (5.185)

If we calculate the scalar product between ~K and ~Ch we obtain

~K · ~Ch =
2π√

3

(√
3

2
(n+m) +

1

2
√

3
(n−m)

)

=
2π

3

(

3

2
(n+m) +

1

2
(n−m)

)

=

=
2π

3

4n+ 2m

2
=

2π

3
(2n+m) = 2πÑ +

2πν

3
, (5.186)

where 2n+m = 3Ñ + ν with ν = 0 or ±1 and Ñ a proper integer. Therefore we have that

ei ~K·~Ch = ei2πÑei 2πν
3 = ei 2πν

3 (5.187)

and thus the first boundary condition near ~K is

ei 2πν
3 F

~K
A (~r + ~Ch) = F

~K
A (~r) (5.188)

or equivalently

F
~K

A (~r + ~Ch) = e−i 2πν
3 F

~K
A (~r) . (5.189)

Multiplying the second equation by g(~r − ~RB)(−iωe−iθ′

e−i ~K·~RB ), summing it over ~RB and then using

the properties of the function g, we find analogously

∑

~RB

g(~r − ~RB)ei ~K·~ChF
~K

B (~RB + ~Ch) =
∑

~RB

g(~r − ~RB)F
~K

B (~RB) ;

ei ~K·~Ch





∑

~RB

g(~r − ~RB)



F
~K

B (~r + ~Ch) =





∑

~RB

g(~r − ~RB)



F
~K

B (~r) ;

ei ~K·~ChF
~K

B (~r + ~Ch) = F
~K

B (~r) . (5.190)

Substituting the value of ei ~K·~Ch , we can rewrite the second boundary condition near ~K in the form

ei 2πν
3 F

~K
B (~r + ~Ch) = F

~K
B (~r) (5.191)
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or equivalently

F
~K

B (~r + ~Ch) = e−i 2πν
3 F

~K
B (~r) . (5.192)

Thus the periodic boundary condition near ~K is

[

F
~K

A (~r + ~Ch)

F
~K

B (~r + ~Ch)

]

= e−i 2πν
3

[

F
~K

A (~r)

F
~K

B (~r)

]

, (5.193)

which can be written in this compact way:

~F
~K(~r + ~Ch) = e−i 2πν

3 ~F
~K(~r) . (5.194)

But, as we have previously seen, the envelope functions have the following form:

~F
~K

s~κ(~r) =
1√
L`
ei~κ·~r ~F

~K
s~κ =

~F
~K

s~κ√
L`
ei(κxx+κyy) , (5.195)

with the surface area Σ = L`, where L = | ~Ch| and ` is the length of the nanotube. Thus the periodic

boundary condition becomes
~F

~K
s~κ√
L`
ei~κ·(~r+~Ch) = e−i 2πν

3

~F
~K

s~κ√
L`
ei~κ·~r (5.196)

or equivalently

ei~κ·~Ch = e−i 2πν
3 . (5.197)

This condition can be written also in the following way:

eiκxL = e−i 2πν
3 1 = e−i 2πν

3 ei2πñ (5.198)

or equivalently

κxL = −2πν

3
+ 2πñ (5.199)

and thus

κx =
2π

L

(

ñ− ν

3

)

= κν(ñ) (5.200)

with ñ integer.

This condition on κx can be obtained also in a different way, imposing the boundary condition on the

overall wave vector ~k. To do so, we have to notice that, considering only the periodic lattice potential

inside the graphene sheet, obviously the wave function ψ(~r) has to be a Bloch function u(~k, ~r)ei~k·~r, where

u(~k, ~r) has the periodicity of the lattice.

Incidentally, we notice that also the previously written tight-binding expression has this form, as we can
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easily check:

ψ(~r) =
∑

j=A,B

Cj(~k)





1√
NΩ

NΩ
∑

~Rj

ei~k·~Rjϕ(~r − ~Rj)



 =

=





∑

j=A,B

∑

~Rj

Cj(~k)
1√
NΩ

e−i~k·(~r−~Rj)ϕ(~r − ~Rj)



 ei~k·~r = u(~k, ~r)ei~k·~r , (5.201)

where u(~k, ~r) has the periodicity of the lattice because

u(~k, ~r + ~ai) =
∑

j=A,B

∑

~Rj

Cj(~k)
1√
NΩ

e−i~k·(~r+~ai−~Rj)ϕ(~r + ~ai − ~Rj) =

=
∑

j=A,B

∑

~Rj

Cj(~k)
1√
NΩ

e−i~k·(~r−(~Rj−~ai))ϕ(~r − (~Rj − ~ai)) =

=
∑

j=A,B

∑

~R∗
j

Cj(~k)
1√
NΩ

e−i~k·(~r−~R∗
j )ϕ(~r − ~R∗j ) = u(~k, ~r) (5.202)

(here we have used the fact that translating the position of an atom of a lattice by a lattice unit vector

we obtain the position of another equivalent atom).

Thus the boundary condition

ψ(~r + ~Ch) = ψ(~r) (5.203)

is equivalent to

u(~k, ~r + ~Ch)ei~k·(~r+~Ch) = u(~k, ~r)ei~k·~r . (5.204)

Since we know that u(~k, ~r) has the lattice periodicity and thus u(~k, ~r + ~Ch) = u(~k, ~r) ( ~Ch being a linear

combination with integer coefficients of the lattice unit vectors) the boundary condition can also be

written:

ei~k·~Ch = 1 (5.205)

or equivalently

~k · ~Ch = 2πm̃ . (5.206)

Thus the boundary condition is (being Ĉh = ~Ch/| ~Ch| = ~Ch/L):

~k · Ĉh = ~k · x̂ = kx = ( ~K)x + κx =
2π

L
m̃ (5.207)

and (using the expression for ~K · ~Ch that we have previously written):

κx =
2π

L
m̃− ( ~K)x =

2π

L
m̃−

~K · ~Ch

L
=

2π

L
m̃− 2π

L
Ñ − 2π

3L
ν =

=
2π

L

(

m̃− Ñ − ν

3

)

=
2π

L

(

ñ− ν

3

)

= κν(ñ) , (5.208)
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which is equal to the previously found expression.

If we substitute this condition on κx inside the dispersion relations of the graphite we find:

E
~K
s,ν(κy) = sγ|~κ| = sγ

√

κ2
x + κ2

y = sγ
√

κν(ñ)2 + κ2
y , (5.209)

where s = +1 and s = −1 represent the conduction and valence bands, respectively.

We notice that ky now is the wave vector k of the nanotube, which, being a substantially unidimensional

material, has a one-dimensional Brillouin zone with width 2π/T (where T is the length of the unit cell

of the nanotube, along its axis, which can be easily found from the numbers n and m characterizing the

nanotube [30]). Correspondingly κy is the difference between the wave vector k of the nanotube and the

component of ~K along ŷ.

As to the envelope functions near ~K, if we rewrite the expression found for the graphene, then we choose

as value of the arbitrary phase φs = −α/2 and finally we enforce the condition on κx, we can write:

~F
~K

s~κ(~r) =
1√
L`
ei~κ·~reiφs

[

e−i α
2 0

0 ei α
2

]

1√
2

[

−is
1

]

=

=
1√
2L`

ei(κxx+κyy)eiφs

[

−ise−i α
2

ei α
2

]

=
1√
2L`

ei(κxx+κyy)

[

−ise−iα

1

]

=

=
1√
2L`

[

se−i( π
2 +α)

1

]

eiκxx+iκyy =
1√
2L`

[

sbν(ñ, κ)

1

]

eiκν(ñ)x+iκyy . (5.210)

The function bν(ñ, κ) = e−i( π
2 +α) can be found noting that α has been defined in such a way that

~κ = |~κ|ei( π
2 +α) ; (5.211)

this means that

ei( π
2 +α) =

~κ

|~κ| =
κx + iκy
√

κ2
x + κ2

y

(5.212)

and thus

bν(ñ, κ) = e−i( π
2 +α) =

(

ei( π
2 +α)

)∗

=

=





κx + iκy
√

κ2
x + κ2

y





∗

=
κx − iκy
√

κ2
x + κ2

y

=
κν(ñ) − iκy
√

κν(ñ)2 + κ2
y

. (5.213)

Analogously, if we impose the two boundary conditions

{

ψA(~RA + ~Ch) = ψA(~RA)

ψB(~RB + ~Ch) = ψB(~RB)
(5.214)
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to the expressions of ψA(~r) and ψB(~r) that we have previously used near ~K ′, we have







ω

i
eiθ′

ei ~K′·(~RA+~Ch)F
~K′

A (~RA + ~Ch) =
ω

i
eiθ′

ei ~K′·~RAF
~K′

A (~RA)

ei ~K′·(~RB+~Ch)F
~K′

B (~RB + ~Ch) = ei ~K′·~RBF
~K′

B (~RB)
. (5.215)

Multiplying the first equation by g(~r− ~RA)(iω−1e−iθ′

e−i ~K′·~RA), summing it over ~RA and then using the

properties of the function g, we find:

∑

~RA

g(~r − ~RA)ei ~K′·~ChF
~K′

A (~RA + ~Ch) =
∑

~RA

g(~r − ~RA)F
~K′

A (~RA) ;

ei ~K′·~Ch





∑

~RA

g(~r − ~RA)



F
~K′

A (~r + ~Ch) =





∑

~RA

g(~r − ~RA)



F
~K′

A (~r) ;

ei ~K′·~ChF
~K′

A (~r + ~Ch) = F
~K′

A (~r) . (5.216)

The scalar product between ~K ′ and ~Ch is equal to

~K ′ · ~Ch =
2π√

3

(√
3

2
(n+m) − 1

2
√

3
(n−m)

)

=
2π

3

(

3

2
(n+m) − 1

2
(n−m)

)

=

=
2π

3

(

3(n+m) − 3

2
(n+m) − 1

2
(n−m)

)

= 2π(n+m) − 2π

3

4n+ 2m

2
=

= 2π(n+m) − 2π

3
(2n+m) = 2π(n+m− Ñ) − 2πν

3
, (5.217)

where we have used the previously introduced relation 2n + m = 3Ñ + ν with ν = 0 or ±1 and Ñ a

proper integer. Thus we have that

ei ~K′·~Ch = ei2π(n+m−Ñ)e−i 2πν
3 = e−i 2πν

3

and consequently the boundary condition near K ′ is

e−i 2πν
3 F

~K′

A (~r + ~Ch) = F
~K′

A (~r) (5.218)

or equivalently

F
~K′

A (~r + ~Ch) = ei 2πν
3 F

~K′

A (~r) . (5.219)



134 The ~k · ~p method.

On the other hand, multiplying the second equation by g(~r− ~RB)e−i ~K′·~RB , summing it over ~RB and then

using the properties of the function g, we find

∑

~RB

g(~r − ~RB)ei ~K′·~ChF
~K′

B (~RB + ~Ch) =
∑

~RB

g(~r − ~RB)F
~K′

B (~RB) ;

ei ~K′·~Ch





∑

~RB

g(~r − ~RB)



F
~K′

B (~r + ~Ch) =





∑

~RB

g(~r − ~RB)



F
~K′

B (~r) ;

ei ~K′·~ChF
~K′

B (~r + ~Ch) = F
~K′

B (~r) . (5.220)

Substituting the value of ei ~K′·~Ch , we can rewrite this second boundary condition near ~K ′ in the form

e−i 2πν
3 F

~K′

B (~r + ~Ch) = F
~K′

B (~r) (5.221)

or equivalently

F
~K′

B (~r + ~Ch) = ei 2πν
3 F

~K′

B (~r) . (5.222)

Thus the overall periodic boundary condition near ~K ′ is

[

F
~K′

A (~r + ~Ch)

F
~K′

B (~r + ~Ch)

]

= ei 2πν
3

[

F
~K′

A (~r)

F
~K′

B (~r)

]

, (5.223)

which can be written compactly:

~F
~K′

(~r + ~Ch) = ei 2πν
3 ~F

~K′

(~r) . (5.224)

Substituting the form that the envelope functions have near ~K ′

~F
~K′

s~κ (~r) =
1√
L`
ei~κ·~r ~F

~K′

s~κ =
~F

~K′

s~κ√
L`
ei(κxx+κyy) (5.225)

the periodic boundary condition becomes

~F
~K′

s~κ√
L`
ei~κ·(~r+~Ch) = ei 2πν

3

~F
~K′

s~κ√
L`
ei~κ·~r (5.226)

or equivalently

ei~κ·~Ch = ei 2πν
3 . (5.227)

This can be rewritten in the form

eiκxL = ei 2πν
3 1 = ei 2πν

3 ei2πñ (5.228)

or equivalently

κxL =
2πν

3
+ 2πñ (5.229)
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and thus

κx =
2π

L

(

ñ+
ν

3

)

= κν(ñ) (5.230)

with ñ integer.

Analogously to what we have done near ~K, this condition on κx can be found also imposing that

ei~k·~Ch = 1 (5.231)

or equivalently

~k · Ĉh = kx = ( ~K ′)x + κx =
2π

L
m̃ , (5.232)

which using the expression for ~K ′ · ~Ch becomes

κx =
2π

L
m̃− ( ~K ′)x =

2π

L
m̃−

~K ′ · ~Ch

L
=

2π

L
m̃− 2π

L
(n+m− Ñ) +

2π

3L
ν =

=
2π

L

(

m̃− n−m+ Ñ +
ν

3

)

=
2π

L

(

ñ+
ν

3

)

= κν(ñ) . (5.233)

If we substitute this condition on κx inside the dispersion relations of the graphite we find:

E
~K′

s,ν(κy) = sγ|~κ| = sγ
√

κ2
x + κ2

y = sγ
√

κν(ñ)2 + κ2
y , (5.234)

where ky now is the wave vector k of the nanotube and κy is the difference between the wave vector k of

the nanotube and the component of ~K ′ along ŷ.

On the other hand, if we rewrite the expression of the electron envelope functions of the graphite near

~K ′, we choose as arbitrary phase φs = α/2 and finally we enforce the condition on κx, we find as envelope

functions in the carbon nanotube near ~K ′:

~F
~K′

s~κ (~r) =
1√
L`
ei~κ·~reiφs

[

ei α
2 0

0 e−i α
2

]

1√
2

[

is

1

]

=

=
1√
2L`

ei(κxx+κyy)eiφs

[

isei α
2

e−i α
2

]

=
1√
2L`

ei(κxx+κyy)

[

iseiα

1

]

=

=
1√
2L`

[

sei( π
2 +α)

1

]

eiκxx+iκyy =
1√
2L`

[

sbν(ñ, κy)

1

]

eiκν(ñ)x+iκyy (5.235)

where for the definition of the angle α we have that

bν(ñ, κy) = ei( π
2 +α) =

~κ

|~κ| =
κx + iκy
√

κ2
x + κ2

y

=
κν(ñ) + iκy
√

κν(ñ)2 + κ2
y

. (5.236)

Let us notice again that also if we consider points of the reciprocal space equivalent to ~K and ~K ′ we

obtain the same final expressions, with ñ integer.
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Figure 5.7: The nanotube (10,0) and its dispersion relations, obtained both by the tight-binding method (solid

lines) and (for the bands correspondent to the smallest values of |κx|) by the ~k · ~p method (dashed lines).

If 2n + m is a multiple of 3 and thus ν = 0, for ñ = 0 we have that κx = κν(ñ) = 0 and consequently

Es,ν = sγ|κy| , that vanishes for κy = 0, so that E+,ν = E−,ν = 0. This means that when 2n + m is

a multiple of 3 among the values of ~k which are allowed by the periodic boundary condition there are

also the points ~K and ~K ′, where the upper and lower bands of the graphite are degenerate, and thus the

nanotube is metallic.

Instead, if 2n+m is not a multiple of 3 and thus ν = ±1, the allowed ~k’s nearest to ~K and ~K ′ correspond

to ñ = 0, for which κx = κν(ñ) = ±2π/(3L) and consequently

Es,ν = sγ

√

(

2π

3L

)2

+ κ2
y . (5.237)

In particular, the minimum and maximum values of the nanotube bands are obtained with the further

position κy = 0 and therefore are equal to

Es,ν = sγ
2π

3L
; (5.238)

thus the bandgap of the nanotube is

Eg = E+,ν − E−,ν = 2γ
2π

3L
=

4πγ

3L
=

4π

3L

√
3aγ0

2
= 2

π

L

a√
3
γ0 =

2γ0 aC−C

dt
, (5.239)

where dt = L/π is the nanotube diameter. Therefore we have that the bandgap of the nanotube depends

upon the reciprocal nanotube diameter.

We notice that the approximate approach for the computation of the density of states in carbon nanotubes

proposed by J. W. Mintmire and C. T. White [31], being based on a linear approximations of the dispersion

relations of the graphene near the extrema points, can be consequently seen as a consequence of a ~k · ~p
study of the nanotube energy bands.
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Figure 5.8: The density of states for unit length of the nanotube (10,0), obtained both by the tight-binding

method (solid lines) and (in a smaller region around E = 0) by the ~k · ~p method (dashed lines).

In Fig. 5.7 we compare the dispersion relations that we have obtained for the same carbon nanotube

using the nearest-neighbor tight-binding method and the ~k · ~p method. We see that the ~k · ~p method

gives a good approximation for the parts of the nanotube dispersion relations obtained from regions of

the graphene reciprocal space near ~K and ~K ′.

In Fig. 5.8 instead we show for the same nanotube both the density of states that we have obtained

properly differentiating the dispersion relations obtained with the tight-binding approach and the density

of states obtained using the Mintmire-White approach. We see that this last approximation gives good

results near E = 0, which actually is the region that derives from the parts of the graphite energy bands

near ~K and ~K ′.

5.5 Conclusion

The ~k · ~p method and the related envelope function method are widely used to study the physical prop-

erties of materials. They have been developed in many and sometimes quite different ways by several

authors and have been successfully applied to a multitude of different problems. This explains the great

variety and inhomogeneity of the related literature. In this review we have briefly described the basics

of these methodologies, dwelling upon the treatments that we have considered more useful for an easy

comprehension. For a detailed explanation of the different approaches, the interested reader can resort

to the many papers and books on the topic, some of which are listed in the references.
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Abstract. The theoretical investigation of charge (and spin) transport at nanometer length scales re-

quires the use of advanced and powerful techniques able to deal with the dynamical properties of the

relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat

transport as well as to take into account interaction effects in a systematic way. Equilibrium Green func-

tion techniques and their extension to non-equilibrium situations via the Keldysh formalism build one

of the pillars of current state-of-the-art approaches to quantum transport which have been implemented

in both model Hamiltonian formulations and first-principle methodologies. In this article we offer an

overview of the applications of Green functions to deal with some fundamental aspects of charge trans-

port at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.

6.1 Introduction

The natural limitations that are expected to arise by the further miniaturization attempts of semiconductor-

based electronic devices have led in the past two decades to the emergence of the new field of molecular

electronics, where electronic functions are going to be performed at the single-molecule level, see for a

recent overview Ref. [1]. The original conception which lies at the bottom of this fascinating field can be
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traced back to the paper by Ari Aviram and Mark Ratner in 1974 [2], where a single-molecule rectifying

diode was proposed. Obviously, one of the core issues at stake in molecular electronics is to clarify the

question whether single molecules (or more complex molecular aggregates) can support an electric current.

To achieve this goal, extremely refined experimental techniques are required in order to probe the response

of such a nano-object to external fields. The meanwhile paradigmatic situation is that of a single molecule

contacted by two metallic electrodes between which a bias voltage is applied. Enormous progress has been

achieved in the experimental realization of such nano-devices [3, 4, 7, 8, 5, 6, 9, 10, 11, 12, 13, 14, 15]; we

only mention the development of mechanically controllable break-junctions [3, 4] and scanning tunneling

microscopy-based techniques [11, 12, 13, 14, 15]. With their help, a plethora of interesting phenomena

like rectification [7], negative differential conductance [16], Coulomb blockade [10], and Kondo effect [6],

among others, have been demonstrated. Apart from single molecules, carbon nanotubes have also found

extensive applications and have been the target of experimental and theoretical studies over the last

years, see Ref. [17] for a very recent review. The expectations to realize electronic at the molecular scale

also reached into the domain of bio-molecular systems, thus opening new perspectives for the field due to

the specific self-recognition and self-assembling properties of biomolecules. For instance, DNA oligomers

have been already used as templates in molecular electronic circuits [18]. Much less clear is, however,

if bio-molecules, and more specifically short DNA oligomers could also act as wiring systems. Their

electrical response properties are much harder to disclose and there is still much controversy about the

factors that determine charge migration through such systems [20, 21, 22].

The theoretical treatment of transport at the nanoscale requires the combined use of different tech-

niques [23, 24, 25, 27, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] which

range from minimal model Hamiltonians, passing through semi-empirical methods up to full first-principle

methodologies. Model Hamiltonians can in a straightforward way select, out of the many variables that

can control charge migration those which are thought to be the most relevant ones for a specific molecule-

electrode set-up. They contain, however, in a sometimes not well-controlled way, many free parameters;

hence, they can point at generic effects, but they must be complemented with other methodologies able

to yield microscopic specific information. Semi-empirical methods can deal with rather large systems due

to the use of special subsets of electronic states to construct molecular Hamiltonians as well as to the

approximate treatment of interactions, but often have the drawback of not being transferable. Ab initio

approaches, finally, can deal in a very precise manner with the electronic and atomic structure of the

different constituents of a molecular junction (metallic electrodes, molecular wire, the interface) but it is

not apriori evident that they can also be applied to strong non-equilibrium situations (density-functional-

theory is a ground state theory and e.g. the transmission calculated using static DFT eigenvalues will

display peaks at the Kohn-Sham excitation energies, which in general do not coincide with the true ex-

citation energies). Extensions to include excited states as in time-dependent density-functional theory,

though very promising, are not fully developed up to date [48].

From a more formal standpoint, there are roughly two main theoretical frameworks that can be used

to study quantum transport: generalized master equations (GME) [49] and Green function (GF) tech-

niques [50, 51, 52, 53]. The former also lead to the more simple rate equations in the case where (i)
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the electrode-system coupling can be considered as a weak perturbation, and (ii) off-diagonal elements

of the reduced density matrix (coherences) can be neglected due to very short decoherence times. Both

approaches, the GME and GF techniques, can yield formally exact expressions for many observables. For

non-interacting systems, one can even solve analytically many models. However, once interactions are in-

troduced - and these are the most interesting cases containing a very rich physics - different approximation

schemes have to be introduced to make the problems tractable.

In this chapter, we will review the technique of non-equilibrium Keldysh Green functions (NEGF). This

approach is able to deal with a very broad variety of physical problems related to quantum transport at the

molecular scale. It can deal with strong non-equilibrium situations via an extension of the conventional

GF formalism to the Schwinger-Keldysch contour [51] and it can also include interaction effects (electron-

electron, electron-vibron, etc) in a systematic way (diagrammatic perturbation theory, equation of motion

techniques). Moreover, as we will show later on, it can reproduce results obtained within the master

equation approach in the weak coupling limit to the electrodes (Coulomb blockade), but it can also

go beyond this limit and cover intermediate coupling (Kondo effect) and strong coupling (Fabry-Perot)

domains. It thus offer the possibility of dealing with different physical regimes in a unified way.

In Sections II we will first introduce the Green functions for non-interacting systems, and present few

examples of transport through non-interacting regions. Then we review the master equation approach

and its application to describe Coulomb blockade and vibron-mediated Franck-Condon blockade. In Sec-

tion III the Keldysh NEGF technique is developed in detail. In equilibrium situations or within the

linear response regime, dynamic response and static correlation functions are related via the fluctuation-

dissipation theorem. Thus, solving Dyson’s equation for the retarded GF is enough to obtain the cor-

relation functions. In strong out-of-equilibrium situations, however, dynamic response and correlation

functions have to be calculated simultaneously and are not related by fluctuation-dissipation theorems.

The Kadanof-Baym-Keldysh approach yield a compact, powerful formulation to derive Dyson and kinetic

equations for non-equilibrium systems. In Sec. IV we present different applications of the Green function

techniques. We show how Coulomb blockade can be described within the Anderson-Hubbard model, once

an appropriate truncation of the equation of motion hierarchy is performed (Sec. IV.A). Further, the

paradigmatic case of transport through a single electronic level coupled to a local vibrational mode is

discussed in detail within the context of the self-consistent Born approximation. It is shown that already

this simple model can display non-trivial physics (Sec. IV.B). Finally, the case of an electronic system

interacting with a bosonic bath is discussed in Sec. IV.C where it is shown that the presence of an

environment with a continuous spectrum can modified the low-energy analytical structure of the Green

function and lead to dramatic changes in the electrical response of the system. We point at the rele-

vance of this situation to discuss transport experiments in short DNA oligomers. We have not addressed

the problem of the (equilibrium or non-equilibrium) Kondo effect, since this issue alone would require a

chapter on its own due to the non-perturbative character of the processes leading to the formation of the

Kondo resonance [54, 55, 56]

In view of the broadness of the topic, the authors were forced to do a very subjective selection of the

topics to be included in this review as well as of the most relevant literature. We thus apologize for the
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omission of many interesting studies which could not be dealt with in the restricted space at our disposal.

We refer the interested reader to the other contributions in this book.
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6.2 From coherent transport to sequential tunneling (basics)

6.2.1 Coherent transport: single-particle Green functions

Nano-scale and molecular-scale systems are naturally described by the discrete-level models, for example

eigenstates of quantum dots, molecular orbitals, or atomic orbitals. But the leads are very large (infinite)

and have a continuous energy spectrum. To include the lead effects systematically, it is reasonable to

start from the discrete-level representation for the whole system. It can be made by the tight-binding

(TB) model, which was proposed to describe quantum systems in which the localized electronic states

play an essential role, it is widely used as an alternative to the plane wave description of electrons in

solids, and also as a method to calculate the electronic structure of molecules in quantum chemistry.

A very effective method to describe scattering and transport is the Green function (GF) method. In

the case of non-interacting systems and coherent transport single-particle GFs are used. In this section

we consider the matrix Green function method for coherent transport through discrete-level systems.

(i) Matrix (tight-binding) Hamiltonian The main idea of the method is to represent the wave

function of a particle as a linear combination of some known localized states ψα(r, σ), where α denote the

set of quantum numbers, and σ is the spin index (for example, atomic orbitals, in this particular case the

method is called LCAO – linear combination of atomic orbitals)

ψ(ξ) =
∑

α

cαψα(ξ), (6.1)

here and below we use ξ ≡ (r, σ) to denote both spatial coordinates and spin.

Using the Dirac notations |α〉 ≡ ψα(ξ) and assuming that ψα(ξ) are orthonormal functions 〈α|β〉 = δαβ

we can write the single-particle matrix (tight-binding) Hamiltonian in the Hilbert space formed by ψα(ξ)

Ĥ =
∑

α

(εα + eϕα)|α〉〈α| +
∑

αβ

tαβ |α〉〈β|, (6.2)

the first term in this Hamiltonian describes the states with energies εα, ϕα is the electrical potential,

the second term should be included if the states |α〉 are not eigenstates of the Hamiltonoian. In the TB

model tαβ is the hopping matrix element between states |α〉 and |β〉, which is nonzero, as a rule, for

nearest neighbor cites. The two-particle interaction is described by the Hamiltonian

Ĥ =
∑

αβ,δγ

Vαβ,δγ |α〉|β〉〈δ|〈γ|, (6.3)

in the two-particle Hilbert space, and so on.

The energies and hopping matrix elements in this Hamiltomian can be calculated, if the single-particle
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Figure 6.1: A linear chain of sites.

real-space Hamiltomian ĥ(ξ) is known:

εαδαβ + tαβ =

∫

ψ∗α(ξ)ĥ(ξ)ψβ(ξ)dξ. (6.4)

This approach was developed originally as an approximate method, if the wave functions of isolated

atoms are taken as a basis wave functions ψα(ξ), but also can be formulated exactly with the help of

Wannier functions. Only in the last case the expansion (6.1) and the Hamiltonian (6.2) are exact, but

some extension to the arbitrary basis functions is possible. In principle, the TB model is reasonable only

when local states can be orthogonalized. The method is useful to calculate the conductance of complex

quantum systems in combination with ab initio methods. It is particular important to describe small

molecules, when the atomic orbitals form the basis.

In the mathematical sense, the TB model is a discrete (grid) version of the continuous Schrödinger

equation, thus it is routinely used in numerical calculations.

To solve the single-particle problem it is convenient to introduce a new representation, where the

coefficients cα in the expansion (6.1) are the components of a vector wave function (we assume here that

all states α are numerated by integers)

Ψ =















c1

c2
...

cN















, (6.5)

and the eigenstates Ψλ are to be found from the matrix Schrödinger equation

HΨλ = EλΨλ, (6.6)

with the matrix elements of the single-particle Hamiltonian

Hαβ =

{

εα + eϕα, α = β,

tαβ , α 6= β.
(6.7)

Now let us consider some typical systems, for which the matrix method is appropriate starting point.

The simplest example is a single quantum dot, the basis is formed by the eigenstates, the corresponding
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Hamiltonian is diagonal

H =





















ε1 0 0 · · · 0

0 ε2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 εN−1 0

0 · · · 0 0 εN





















. (6.8)

The next typical example is a linear chain of single-state sites with only nearest-neighbor couplings

(Fig. 6.1)

H =





















ε1 t 0 · · · 0

t ε2 t · · · 0
...

. . .
. . .

. . .
...

0 · · · t εN−1 t

0 · · · 0 t εN





















. (6.9)

The method is applied as well to consider the semi-infinite leads. Although the matrices are for-

mally infinitely-dimensional in this case, we shall show below, that the problem is reduced to the finite-

dimensional problem for the quantum system of interest, and the semi-infinite leads can be integrated

out.

Finally, in the second quantized form the tight-binding Hamiltonian is

Ĥ =
∑

α

(εα + eϕα) c†αcα +
∑

α6=β

tαβc
†
αcβ . (6.10)

(ii)Matrix Green functions and contact self-energies The solution of single-particle quantum

problems, formulated with the help of a matrix Hamiltonian, is possible along the usual line of finding

the wave-functions on a lattice, solving the Schrödinger equation (6.6). The other method, namely matrix

Green functions, considered in this section, was found to be more convenient for transport calculations,

especially when interactions are included.

The retarded single-particle matrix Green function GR(ε) is determined by the equation

[(ε+ iη)I − H] GR = I, (6.11)

where η is an infinitesimally small positive number η = 0+.

For an isolated noninteracting system the Green function is simply obtained after the matrix inversion

GR = [(ε+ iη)I − H]
−1
. (6.12)

Let us consider the trivial example of a two-level system with the Hamiltonian

H =

(

ε1 t

t ε2

)

. (6.13)
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Figure 6.2: A quantum system coupled to the left and right leads.

The retarded GF is easy found to be (ε̃ = ε+ iη)

GR(ε) =
1

(ε̃− ε1)(ε̃− ε2) + t2

(

ε̃− ε2 t

t ε̃− ε1

)

. (6.14)

Now let us consider the case, when the system of interest is coupled to two contacts (Fig. 6.2). We

assume here that the contacts are also described by the tight-binding model and by the matrix GFs.

Actually, the semi-infinite contacts should be described by the matrix of infinite dimension. We shall

consider the semi-infinite contacts in the next section.

Let us present the full Hamiltonian of the considered system in a following block form

H =









H0
L HLS 0

H†LS H0
S H†RS

0 HRS H0
R









, (6.15)

where H0
L, H0

S , and H0
R are Hamiltonians of the left lead, the system, and the right lead separately. And

the off-diagonal terms describe system-to-lead coupling. The Hamiltonian should be hermitian, so that

HSL = H†LS , HSR = H†RS . (6.16)

The Eq. (6.11) can be written as









E − H0
L −HLS 0

−H†LS E − H0
S −H†RS

0 −HRS E − H0
R

















GL GLS 0

GSL GS GSR

0 GRS GR









= I, (6.17)

where we introduce the matrix E = (ε + iη)I, and represent the matrix Green function in a convenient

form, the notation of retarded function is omitted in intermediate formulas. Now our first goal is to find
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the system Green function GS which defines all quantities of interest. From the matrix equation (6.17)

(

E − H0
L

)

GLS − HLSGS = 0, (6.18)

−H†LSGLS +
(

E − H0
S

)

GS − H†RSGRS = I, (6.19)

−HRSGS +
(

E − H0
R

)

GRS = 0. (6.20)

From the first and the third equations one has

GLS =
(

E − H0
L

)−1
HLSGS , (6.21)

GRS =
(

E − H0
R

)−1
HRSGS , (6.22)

and substituting it into the second equation we arrive at the equation

(

E − H0
S − Σ

)

GS = I, (6.23)

where we introduce the contact self-energy (which should be also called retarded, we omit the index in

this chapter)

Σ = H†LS

(

E − H0
L

)−1
HLS + H†RS

(

E − H0
R

)−1
HRS . (6.24)

Finally, we found, that the retarded GF of a nanosystem coupled to the leads is determined by the

expression

GR
S (ε) =

[

(ε+ iη)I − H0
S − Σ

]−1
, (6.25)

the effects of the leads are included through the self-energy.

Here we should stress the important property of the self-energy (6.24), it is determined only by the

coupling Hamiltonians and the retarded GFs of the isolated leads G0R
i =

(

E − H0
R

)−1
(i = L,R)

Σi = H†iS
(

E − H0
i

)−1
HiS = H†iSG0R

i HiS , (6.26)

it means, that the contact self-energy is independent of the state of the nanosystem itself and describes

completely the influence of the leads. Later we shall see that this property conserves also for interacting

system, if the leads are noninteracting.

Finally, we should note, that the Green functions considered in this section, are single-particle GFs,

and can be used only for noninteracting systems.

(iii) Semi-infinite leads Let us consider now a nanosystem coupled to a semi-infinite lead (Fig. 6.3).

The direct matrix inversion can not be performed in this case. The spectrum of a semi-infinite system is

continuous. We should transform the expression (6.26) into some other form.

To proceed, we use the relation between the Green function and the eigenfunctions Ψλ of a system,

which are solutions of the Schrödinger equation (6.6). Let us define Ψλ(α) ≡ cλ in the eigenstate |λ〉 in
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Figure 6.3: A quantum system coupled to a semi-infinite 1D lead.

the sense of definition (6.5), then

GR
αβ(ε) =

∑

λ

Ψλ(α)Ψ∗λ(β)

ε+ iη − Eλ
, (6.27)

where α is the TB state (site) index, λ denotes the eigenstate, Eλ is the energy of the eigenstate. The

summation in this formula can be easy replaced by the integration in the case of a continuous spectrum.

It is important to notice, that the eigenfunctions Ψλ(α) should be calculated for the separately taken

semi-infinite lead, because the Green function of isolated lead is substituted into the contact self-energy.

For example, for the semi-infinite 1D chain of single-state sites (n,m = 1, 2, ...)

GR
nm(ε) =

∫ π

−π

dk

2π

Ψk(n)Ψ∗k(m)

ε+ iη − Ek
, (6.28)

with the eigenfunctions Ψk(n) =
√

2 sin kn, Ek = ε0 + 2t cos k.

Let us consider a simple situation, when the nanosystem is coupled only to the end site of the 1D

lead (Fig. 6.3). From (6.26) we obtain the matrix elements of the self-energy

Σαβ = V ∗1αV1βG
0R
11 , (6.29)

where the matrix element V1α describes the coupling between the end site of the lead (n = m = 1) and

the state |α〉 of the nanosystem.

To make clear the main physical properties of the lead self-energy, let us analyze in detail the semi-

infinite 1D lead with the Green function (6.28). The integral can be calculated analytically (Datta II,

p. 213, [57])

GR
11(ε) =

1

π

∫ π

−π

sin2 kdk

ε+ iη − ε0 − 2t cos k
= −exp(iK(ε))

t
, (6.30)

K(ε) is determined from ε = ε0 + 2t cosK. Finally, we obtain the following expressions for the real and
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Figure 6.4: Real and imaginary parts of the contact self-energy as a function of energy for a one-band one-
dimensional lead.

imaginary part of the self-energy

ReΣαα =
|V1α|2
t

(

κ−
√

κ2 − 1 [θ(κ− 1) − θ(−κ− 1)]
)

, (6.31)

ImΣαα = −|V1α|2
t

√

1 − κ2θ(1 − |κ|), (6.32)

κ =
ε− ε0

2t
. (6.33)

The real and imaginary parts of the self-energy, given by these expressions, are shown in Fig. 6.4. There

are several important general conclusion that we can make looking at the formulas and the curves.

(a) The self-energy is a complex function, the real part describes the energy shift of the level, and

the imaginary part describes broadening. The finite imaginary part appears as a result of the continuous

spectrum in the leads. The broadening is described traditionally by the matrix

Γ = i
(

Σ − Σ†
)

, (6.34)

called level-width function.

(b) In the wide-band limit (t → ∞), at the energies ε− ε0 � t, it is possible to neglect the real part

of the self-energy, and the only effect of the leads is level broadening. So that the self-energy of the left

(right) lead is

ΣL(R) = −iΓL(R)

2
. (6.35)

(iv) Transmission, conductance, current After all, we want again to calculate the current through

the nanosystem. We assume, as before, that the contacts are equilibrium, and there is the voltage V

applied between the left and right contacts. The calculation of the current in a general case is more
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convenient to perform using the full power of the nonequilibrium Green function method. Here we

present a simplified approach, valid for noninteracting systems only, following Paulsson [58].

Let us come back to the Schrödinger equation (6.6) in the matrix representation, and write it in the

following form








H0
L HLS 0

H†LS H0
S H†RS

0 HRS H0
R

















ΨL

ΨS

ΨR









= E









ΨL

ΨS

ΨR









, (6.36)

where ΨL, ΨS , and ΨR are vector wave functions of the left lead, the nanosystem, and the right lead

correspondingly.

Now we find the solution in the scattering form (which is difficult to call true scattering because we

do not define explicitly the geometry of the leads). Namely, in the left lead ΨL = Ψ0
L + Ψ1

L, where Ψ0
L is

the eigenstate of H0
L, and is considered as known initial wave. The ”reflected” wave Ψ1

L, as well as the

transmitted wave in the right lead ΨR, appear only as a result of the interaction between subsystems.

The main trick is, that we find a retarded solution.

Solving the equation (6.36) with these conditions, the solution is

ΨL =
(

1 + G0R
L HLSGR

S H†LS

)

Ψ0
L, (6.37)

ΨR = G0R
R HRSGR

S H†LSΨ0
L (6.38)

ΨS = GR
S H†LSΨ0

L. (6.39)

The physical sense of this expressions is quite transparent, they describe the quantum amplitudes of the

scattering processes. Three functions ΨL, ΨS , and ΨR are equivalent together to the scattering state in

the Landauer-Büttiker theory. Note, that GR
S here is the full GF of the nanosystem including the lead

self-energies.

Now the next step. We want to calculate the current. The partial (for some particular eigenstate

Ψ0
Lλ) current from the lead to the system is

ji=L,R =
ie

~

(

Ψ†iHiSΨS − Ψ†SH†iSΨi

)

. (6.40)

To calculate the total current we should substitute the expressions for the wave functions (6.37)-

(6.39), and summarize all contributions [58]. As a result the Landauer formula is obtained. We present

the calculation for the transmission function. First, after substitution of the wave functions we have for

the partial current going through the system

jλ = jL = −jR = − ie

~

(

Ψ†RHRSΨS − Ψ†SH†RSΨR

)

=

− ie

~

(

Ψ0†
L HLSGA

S H†RS

(

G0†
R − G0

R

)

HRSGR
S H†LSΨ0

L

)

=

e

~

(

Ψ0†
L HLSGA

S ΓRGR
S H†LSΨ0

L

)

. (6.41)
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The full current of all possible left eigenstates is given by

I =
∑

λ

jλ =
∑

λ

e

~

(

Ψ0†
LλHLSGA

S ΓRGR
S H†LSΨ0

Lλ

)

fL(Eλ), (6.42)

the distribution function fL(Eλ) describes the population of the left states, the distribution function of

the right lead is absent here, because we consider only the current from the left to the right.

The same current is given by the Landauer formula through the transmission function T̄ (E)

I =
e

h

∫ ∞

−∞

T (E)fL(E)dE. (6.43)

If one compares these two expressions for the current, the transmission function at some energy is

obtained as

T (E) = 2π
∑

λ

δ(E − Eλ)
(

Ψ0†
LλHLSGA

S ΓRGR
S H†LSΨ0

Lλ

)

= 2π
∑

λ

∑

δ

δ(E − Eλ)
(

Ψ0†
LλHLSΨδ

)(

Ψ†δG
A
S ΓRGR

S H†LSΨ0
Lλ

)

=
∑

δ

(

Ψ†δG
A
S ΓRGR

S H†LS

(

2π
∑

λ

δ(E − Eλ)Ψ0
LλΨ0†

Lλ

)

HLSΨδ

)

= Tr
(

ΓLGA
S ΓRGR

S

)

. (6.44)

To evaluate the sum in brackets we used the eigenfunction expansion (6.27) for the left contact.

We obtained the new representation for the transmission formula, which is very convenient for nu-

merical calculations

T = Tr
(

t̂t̂†
)

= Tr
(

ΓLGAΓRGR
)

. (6.45)

Finally, one important remark, at finite voltage the diagonal energies in the Hamiltonians H0
L, H0

S ,

and H0
R are shifted εα → εα + eϕα. Consequently, the energy dependencies of the self-energies defined

by (6.26) are also changed and the lead self-energies are voltage dependent. However, it is convenient

to define the self-energies using the Hamiltonians at zero voltage, in that case the voltage dependence

should be explicitly shown in the transmission formula

T (E) = Tr
[

ΓL(E − eϕL)GR(ε)ΓR(E − eϕR)GA(ε)
]

, (6.46)

where ϕR and ϕL are electrical potentials of the right and left leads.

With known transmission function, the current I at finite voltage V can be calculated by the usual

Landauer-Bütiker formulas (without spin degeneration, otherwise it should be multiplied additionally by

2)

I(V ) =
e

h

∫ ∞

−∞

T (E) [fL(E) − fR(E)] dE, (6.47)
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where the equilibrium distribution functions of the contacts should be written with corresponding chemical

potentials µi, and electrical potentials ϕi

fL(E) =
1

exp
(

E−µL−eϕL

T

)

+ 1
, fR(E) =

1

exp
(

E−µR−eϕR

T

)

+ 1
. (6.48)

The zero-voltage conductance G is

G =
dI

dV

∣

∣

∣

∣

V =0

= −e
2

h

∫ ∞

−∞

T (E)
∂f0(E)

∂E
dE, (6.49)

where f0(E) is the equilibriumfermi-function

f0(E) =
1

exp
(

E−µ
T

)

+ 1
. (6.50)

6.2.2 Interacting nanosystems and master equation method

The single-particle matrix Green function methods, considered in the previous section, can be applied

only in the case of noninteracting electrons and without inelastic scattering. In the case of interacting

systems, the other approach, known as the method of tunneling (or transfer) Hamiltonian (TH), plays an

important role, and is widely used to describe tunneling in superconductors, in ferromagnets, effects in

small tunnel junctions such as Coulomb blockade (CB), etc. The main advantage of this method is that

it is easely combined with powerful methods of many-body theory. Besides, it is very convenient even for

noninteracting electrons, when the coupling between subsystems is weak, and the tunneling process can

be described by rather simple matrix elements.

(i) Tunneling (transfer) Hamiltonian The main idea is to represent the Hamiltonian of the system

(we consider first a single contact between two subsystems) as a sum of three parts: ”left” ĤL, ”right”

ĤR, and ”tunneling” ĤT

Ĥ = ĤL + ĤR + ĤT , (6.51)

ĤL and ĤR determine ”left” |Lk〉 and ”right” |Rq〉 states

ĤLψk(ξ) = Ekψk(ξ), (6.52)

ĤRψq(ξ) = Eqψq(ξ), (6.53)

below in this lecture we use the index k for left states and the index q for right states. ĤT determines

”transfer” between these states and is defined through matrix elements Vkq = 〈Lk|ĤT |Rq〉. With these

definitions the single-particle tunneling Hamiltonian is

Ĥ =
∑

k∈L

Ek|k〉〈k| +
∑

q∈R

Eq|q〉〈q| +
∑

kq

[

Vqk|q〉〈k| + V ∗qk|k〉〈q|
]

. (6.54)
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The method of the tunneling Hamiltonian was introduced by Bardeen [59], developed by Harrison [60],

and formulated in most familiar second quantized form by Cohen, Falicov, and Phillips [61]. In spite of

many very successful applications of the TH method, it was many times criticized for it’s phenomenological

character and incompleteness, beginning from the work of Prange [62]. However, in the same work Prange

showed that the tunneling Hamiltonian is well defined in the sense of the perturbation theory. These

developments and discussions were summarized by Duke [63]. Note, that the formulation equivalent to

the method of the tunneling Hamiltonian can be derived exactly from the tight-binding approach.

Indeed, the tight-binding model assumes that the left and right states can be clearly separated, also

when they are orthogonal. The difference with the continuous case is, that we restrict the Hilbert space

introducing the tight-binding model, so that the solution is not exact in the sense of the continuous

Schrödinger equation. But, in fact, we only consider physically relevant states, neglecting high-energy

states not participating in transport.

Compare the tunneling Hamiltonian (6.54) and the tight-binding Hamiltonian (6.2), divided into left

and right parts

Ĥ =
∑

αβ∈L

ε̃αβ |α〉〈β| +
∑

δγ∈R

ε̃δγ |δ〉〈γ| +
∑

α∈L, δ∈R

[

Vδα|δ〉〈α| + V ∗δα|α〉〈δ|
]

. (6.55)

The first two terms are the Hamiltonians of the left and right parts, the third term describes the left-right

(tunneling) coupling. The equivalent matrix representation of this Hamiltonian is

H =

(

H0
L HLR

H†LR H0
R

)

. (6.56)

The Hamiltonians (6.54) and (6.55) are essentially the same, only the first one is written in the

eigenstate basis |k〉, |q〉, while the second in the tight-binding basis |α〉, |β〉 of the left lead and |δ〉, |γ〉 of

the right lead. Now we want to transform the TB Hamiltonian (6.55) into the eigenstate representation.

Canonical transformations from the tight-binding (atomic orbitals) representation to the eigenstate

(molecular orbitals) representation play an important role, and we consider it in detail. Assume, that we

find two unitary matrices SL and SR, such that the Hamiltonians of the left part H0
L and of the right

part H0
R can be diagonalized by the canonical transformations

H̄0
L = S−1

L H0
LSL, (6.57)

H̄0
R = S−1

R H0
RSR. (6.58)

The left and right eigenstates can be written as

|k〉 =
∑

α

SLkα|α〉, (6.59)

|q〉 =
∑

δ

SRqδ|δ〉, (6.60)
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and the first two free-particle terms of the Hamiltonian (6.54) are reproduced. The tunneling terms are

transformed as

H̄LR = S−1
L HLRSR, (6.61)

H̄†LR = S−1
R H†LRSL, (6.62)

or explicitly
∑

α∈L, δ∈R

Vδα|δ〉〈α| =
∑

kq

Vqk|q〉〈k|, (6.63)

where

Vqk =
∑

α∈L, δ∈R

VδαSLαkSRδq. (6.64)

The last expression solve the problem of transformation of the tight-binding matrix elements into tun-

neling matrix elements.

For applications the tunneling Hamiltonian (6.54) should be formulated in the second quantized form.

We introduce creation and annihilation Schrödinger operators c†Lk, cLk, c†Rq, cRq. Using the usual rules

we obtain

Ĥ = ĤL

({

c†k; ck

})

+ ĤR

({

c†q; cq
})

+ ĤT

({

c†k; ck; c†q; cq

})

, (6.65)

Ĥ =
∑

k

(εk + eϕL(t))c†kck +
∑

q

(εq + eϕR(t))c†qcq +
∑

kq

[

Vqkc
†
qck + V ∗qkc

†
kcq

]

. (6.66)

It is assumed that left ck and right cq operators describe independent states and are anticommutative.

For nonorthogonal states of the Hamiltonian Ĥl + ĤR it is not exactly so. But if we consider ĤL and

ĤR as two independent Hamiltonians with independent Hilbert spaces we resolve this problem. Thus

we again should consider (6.66) not as a true Hamiltonian, but as the formal expression describing the

current between left and right states. In the weak coupling case the small corrections to the commutation

relations are of the order of |Vqk| and can be neglected. If the tight-binding formulation is possible, (6.66)

is exact within the framework of this formulation. In general the method of tunneling Hamiltonian can

be considered as a phenomenological microscopic approach, which was proved to give reasonable results

in many cases, e.g. in description of tunneling between superconductors and Josephson effect.

(ii) Tunneling current The current from the state k into the state q is given by the golden rule

Jk→q = eΓqk =
2πe

~
|Vqk|2fL(k) (1 − fR(q)) δ(Ek − Eq), (6.67)

the probability (1−fR(Eq)) that the right state is unoccupied should be included, it is different from the

scattering approach because left and right states are two independent states!

Then we write the total current as the sum of all partial currents from left states to right states and
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vice versa (note that the terms fL(k)fR(q) are cancelled)

J =
2πe

~

∑

kq

|Vqk|2 [f(k) − f(q)] δ(Eq − Ek). (6.68)

For tunneling between two equilibrium leads distribution functions are simply Fermi-Dirac functions

(6.48) and current can be finally written in the well known form (To do this one should multiply the

integrand on 1 =
∫

δ(E − Eq)dE.)

J =
e

h

∫ ∞

−∞

T (E, V ) [fL(E) − fR(E)] dE, (6.69)

with

T (E, V ) = (2π)2
∑

qk

|Vkq|2δ(E − Ek − eϕL)δ(E − Eq − eϕR). (6.70)

This expression is equivalent to the Landauer formula (6.47), but the transmission function is related

now to the tunneling matrix element.

Now let us calculate the tunneling current as the time derivative of the number of particles operator

in the left lead N̂L =
∑

k c
†
kck. Current from the left to right contact is

J(t) = −e
〈(

dNL

dt

)〉

S

= − ie
~

〈

[

ĤT , NL

]

−

〉

S

, (6.71)

where 〈...〉S is the average over time-dependent Schrödinger state. N̂L commute with both left and right

Hamiltonians, but not with the tunneling Hamiltonian

[

ĤT , NL

]

−
=
∑

k′

∑

kq

[(

Vqkc
†
qck + V ∗qkcqc

†
k

)

c†k′ck′

]

−
, (6.72)

using commutation relations

ckc
†
k′ck′ − c†k′ck′ck = ckc

†
k′ck′ + c†k′ckck′ = (ckc

†
k′ + δkk′ − ckc

†
k′)ck′ = δkk′ck,

we obtain

J(t) =
ie

~

∑

kq

[

Vqk

〈

c†qck
〉

S
− V ∗qk

〈

c†kcq

〉

S

]

. (6.73)

Now we switch to the Heisenberg picture, and average over initial time-independent equilibrium state

〈

Ô(t)
〉

= Sp
(

ρ̂eqÔ(t)
)

, ρ̂eq =
e−Heq/T

Sp
(

e−Heq/T
) . (6.74)

One obtains

J(t) =
ie

~

∑

kq

[

Vqk

〈

c†q(t)ck(t)
〉

− V ∗qk

〈

c†k(t)cq(t)
〉]

. (6.75)



160 Green function techniques in the treatement of transport at the molecular scale

It can be finally written as

J(t) =
2e

~
Im





∑

kq

Vqkρkq(t)



 =
2e

~
Re





∑

kq

VqkG
<
kq(t, t)



 .

We define ”left-right” density matrix or more generally lesser Green function

G<
kq(t1, t2) = i

〈

c†q(t2)ck(t1)
〉

.

Later we show that these expressions for the tunneling current give the same answer as was obtained

above by the golden rule in the case of noninteracting leads.

(iii) Sequential tunneling and the master equation Let us come back to our favorite problem –

transport through a quantum system. There is one case (called sequential tunneling), when the simple

formulas discussed above can be applied even in the case of resonant tunneling

Assume that a noninteracting nanosystem is coupled weakly to a thermal bath (in addition to the

leads). The effect of the thermal bath is to break phase coherence of the electron inside the system during

some time τph, called decoherence or phase-breaking time. τph is an important time-scale in the theory,

it should be compared with the so-called ”tunneling time” – the characteristic time for the electron to

go from the nanosystem to the lead, which can be estimated as an inverse level-width function Γ−1. So

that the criteria of sequential tunneling is

Γτph � 1. (6.76)

The finite decoherence time is due to some inelastic scattering mechanism inside the system, but typically

this time is shorter than the energy relaxation time τε, and the distribution function of electrons inside

the system can be nonequilibrium (if the finite voltage is applied), this transport regime is well known in

semiconductor superlattices and quantum-cascade structures.

In the sequential tunneling regime the tunneling events between the left lead and the nanosystem and

between the left lead and the nanosystem are independent and the current from the left (right) lead to

the nanosystem is given by the golden rule expression (6.68). Let us modify it to the case of tunneling

from the lead to a single level |α〉 of a quantum system

J =
2πe

~

∑

k

|Vαk|2 [f(k) − Pα] δ(Eα − Ek), (6.77)

where we introduce the probability Pα to find the electron in the state |α〉 with the energy Eα.

(iv) Rate equations for noninteracting systems Rate equation method is a simple approach base

on the balance of incoming and outgoing currents. Assuming that the contacts are equilibrium we obtain

for the left and right currents

Ji=L(R) = eΓiα

[

f0
i (Eα) − Pα

]

, (6.78)
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where

Γiα =
2π

~

∑

k

|Vαk|2δ(Eα − Ek). (6.79)

In the stationary state J = JL = −JR, and from this condition the level population Pα is found to be

Pα =
ΓLαf

0
L(Eα) + ΓRαf

0
R(Eα)

ΓLα + ΓRα
, (6.80)

with the current

J = e
ΓLαΓRα

ΓLα + ΓRα

(

f0
L(Eα) − f0

R(Eα)
)

. (6.81)

It is interesting to note that this expression is exactly the same, as one can obtain for the resonant

tunneling through a single level without any scattering. It should be not forgotten, however, that we did

not take into account additional level broadening due to scattering.

(v) Master equation for interacting systems Now let us formulate briefly a more general approach

to transport through interacting nanosystems weakly coupled to the leads in the sequential tunneling

regime, namely the master equation method. Assume, that the system can be in several states |λ〉, which

are the eigenstates of an isolated system and introduce the distribution function Pλ – the probability

to find the system in the state |λ〉. Note, that these states are many-particle states, for example for a

two-level quantum dot the possible states are |λ〉 = |00〉, |10〉, 01|〉, and |11〉. The first state is empty

dot, the second and the third with one electron, and the last one is the double occupied state. The

other non-electronic degrees of freedom can be introduce on the same ground in this approach. The only

restriction is that some full set of eigenstates should be used

∑

λ

Pλ = 1. (6.82)

The next step is to treat tunneling as a perturbation. Following this idea, the transition rates Γλλ′

from the state λ′ to the state λ are calculated using the Fermi golden rule

Γfi =
2π

~

∣

∣

∣

〈

f |ĤT |i
〉∣

∣

∣

2

δ(Ef − Ei). (6.83)

Then, the kinetic (master) equation can be written as

dPλ

dt
=
∑

λ′

Γλλ′

Pλ′ −
∑

λ′

Γλ′λPλ, (6.84)

where the first term describes tunneling transition into the state |λ〉, and the second term – tunneling

transition out of the state |λ〉.
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In the stationary case the probabilities are determined from

∑

λ′

Γλλ′

Pλ′ =
∑

λ′

Γλ′λPλ. (6.85)

For noninteracting electrons the transition rates are determined by the single-electron tunneling rates,

and are nonzero only for the transitions between the states with the number of electrons different by one.

For example, transition from the state |λ′〉 with empty electron level α into the state |λ〉 with filled state

α is described by

Γnα=1 nα=0 = ΓLαf
0
L(Eα) + ΓRαf

0
R(Eα), (6.86)

where ΓLα and ΓRα are left and right level-width functions (6.79).

For interacting electrons the calculation is a little bit more complicated. One should establish the

relation between many-particle eigenstates of the system and single-particle tunneling. To do this, let us

note, that the states |f〉 and |i〉 in the golden rule formula (6.83) are actually the states of the whole

system, including the leads. We denote the initial and final states as

|i〉 = |k̂i, λ
′〉 = |k̂i〉|λ′〉, (6.87)

|f〉 = |k̂f , λ〉 = |k̂f 〉|λ〉, (6.88)

where k̂ is the occupation of the single-particle states in the lead. The parameterization is possible,

because we apply the perturbation theory, and isolated lead and nanosystem are independent.

The important point is, that the leads are actually in the equilibrium mixed state, the single electron

states are populated with probabilities, given by the Fermi-Dirac distribution function. Taking into

account all possible single-electron tunneling processes, we obtain the incoming tunneling rate

Γλλ′

in =
2π

~

∑

ikσ

f0
i (Eikσ)

∣

∣

〈

ik̄, λ
∣

∣H̄T

∣

∣ ik, λ′
〉∣

∣

2
δ(Eλ′ + Eikσ − Eλ), (6.89)

where we use the short-hand notations: |ik, λ′〉 is the state with occupied k-state in the i−th lead, while

|ik̄, λ〉 is the state with unoccupied k-state in the i−th lead, and all other states are assumed to be

unchanged, Eλ is the energy of the state λ .

To proceed, we introduce the following Hamiltonian, describing single electron tunneling and charging

of the nanosystem state

ĤT =
∑

kλλ′

[

Vλλ′kckX
λλ′

+ V ∗λλ′kc
†
kX

λ′λ
]

, (6.90)

the Hubbard operators Xλλ′

= |λ〉〈λ′| describe transitions between eigenstates of the nanosystem.

Substituting this Hamiltonian one obtains

Γλλ′

in =
2π

~

∑

ikσ

f0
i (Eikσ) |Vikσ|2 |Vλλ′k|2 δ(Eλ′ + Eikσ − Eλ). (6.91)
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In the important limiting case, when the matrix element Vλλ′k is k-independent, the sum over k can

be performed, and finally

Γλλ′

in =
∑

i=L,R

Γi(Eλ − Eλ′) |Vλλ′ |2 f0
i (Eλ − Eλ′). (6.92)

Similarly, the outgoing rate is

Γλλ′

out =
∑

i=L,R

Γi(Eλ′ − Eλ) |Vλλ′ |2
(

1 − f0
i (Eλ′ − Eλ)

)

. (6.93)

The current (from the left or right lead to the system) is

Ji=L,R(t) = e
∑

λλ′

(

Γλλ′

i inPλ′ − Γλλ′

i outPλ′

)

. (6.94)

This system of equations solves the transport problem in the sequential tunneling regime.

6.2.2.1 Electron-electron interaction and Coulomb blockade

(i) Anderson-Hubbard and constant-interaction models To take into account both discrete en-

ergy levels of a system and the electron-electron interaction, it is convenient to start from the general

Hamiltonian

Ĥ =
∑

αβ

ε̃αβd
†
αdβ +

1

2

∑

αβγδ

Vαβ,γδd
†
αd
†
βdγdδ. (6.95)

The first term of this Hamiltonian is a free-particle discrete-level model (6.10) with ε̃αβ including electrical

potentials. And the second term describes all possible interactions between electrons and is equivalent to

the real-space Hamiltonian

Ĥee =
1

2

∫

dξ

∫

dξ′ψ̂†(ξ)ψ̂†(ξ′)V (ξ, ξ′)ψ̂(ξ′)ψ̂(ξ), (6.96)

where ψ̂(ξ) are field operators

ψ̂(ξ) =
∑

α

ψα(ξ)dα, (6.97)

ψα(ξ) are the basis single-particle functions, we remind, that spin quantum numbers are included in α,

and spin indices are included in ξ ≡ r, σ as variables.

The matrix elements are defined as

Vαβ,γδ =

∫

dξ

∫

dξ′ψ∗α(ξ)ψ∗β(ξ′)V (ξ, ξ′)ψγ(ξ)ψδ(ξ′). (6.98)

For pair Coulomb interaction V (|r|) the matrix elements are

Vαβ,γδ =
∑

σσ′

∫

dr

∫

dr′ψ∗α(r, σ)ψ∗β(r′, σ′)V (|r − r′|)ψγ(r, σ)ψδ(r′, σ′). (6.99)
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Assume now, that the basis states |α〉 are the states with definite spin quantum number σα. It means,

that only one spin component of the wave function, namely ψα(σα) is nonzero, and ψα(σ̄α) = 0. In this

case the only nonzero matrix elements are those with σα = σγ and σβ = σδ, they are

Vαβ,γδ =

∫

dr

∫

dr′ψ∗α(r)ψ∗β(r′)V (|r − r′|)ψγ(r)ψδ(r′). (6.100)

In the case of delocalized basis states ψα(r), the main matrix elements are those with α = γ and

β = δ, because the wave functions of two different states with the same spin are orthogonal in real space

and their contribution is small. It is also true for the systems with localized wave functions ψα(r), when

the overlap between two different states is weak. In these cases it is enough to replace the interacting

part by the Anderson-Hubbard Hamiltonian, describing only density-density interaction

ĤAH =
1

2

∑

α6=β

Uαβn̂αn̂β . (6.101)

with the Hubbard interaction defined as

Uαβ =

∫

dr

∫

dr′|ψα(r)|2|ψβ(r′)|2V (|r − r′|). (6.102)

In the limit of a single-level quantum dot (which is, however, a two-level system because of spin

degeneration) we get the Anderson impurity model (AIM)

ĤAIM =
∑

σ=↑↓

εσd
†
σdσ + Un̂↑n̂↓. (6.103)

The other important limit is the constant interaction model (CIM), which is valid when many levels

interact with similar energies, so that approximately, assuming Uαβ = U for any states α and β

ĤAH =
1

2

∑

α6=β

Uαβn̂αn̂β ≈ U

2

(

∑

α

n̂α

)2

− U

2

(

∑

α

n̂2
α

)

=
UN̂(N̂ − 1)

2
. (6.104)

where we used n̂2 = n̂.

Thus, the CIM reproduces the charging energy considered above, and the Hamiltonian of an isolated

system is

ĤCIM =
∑

αβ

ε̃αβd
†
αdβ + E(N). (6.105)

Note, that the equilibrium compensating charge density can be easily introduced into the AH Hamil-

tonian

ĤAH =
1

2

∑

α6=β

Uαβ (n̂α − n̄α) (n̂β − n̄β) . (6.106)
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(ii) Coulomb blockade in quantum dots Here we want to consider the Coulomb blockade in

intermediate-size quantum dots, where the typical energy level spacing ∆ε is not too small to neglect it

completely, but the number of levels is large enough, so that one can use the constant-interaction model

(6.105), which we write in the eigenstate basis as

ĤCIM =
∑

α

ε̃αd
†
αdα + E(n), (6.107)

where the charging energy E(n) is determined in the same way as previously, for example by the expression

(6.104). Note, that for quantum dots the usage of classical capacitance is not well established, although

for large quantum dots it is possible. Instead, we shift the energy levels in the dot ε̃α = εα + eϕα by the

electrical potential

ϕα = VG + VR + ηα(VL − VR), (6.108)

where ηα are some coefficients, dependent on geometry. This method can be easily extended to include

any self-consistent effects on the mean-field level by the help of the Poisson equation (instead of classical

capacitances). Besides, if all ηα are the same, our approach reproduce again the the classical expression

ÊCIM =
∑

α

εαnα + E(n) + enϕext. (6.109)

The addition energy now depends not only on the charge of the molecule, but also on the state |α〉,
in which the electron is added

∆E+
nα(n, nα = 0 → n+ 1, nα = 1) = E(n+ 1) − E(n) + εα, (6.110)

we can assume in this case, that the single particle energies are additive to the charging energy, so that

the full quantum eigenstate of the system is |n, n̂〉, where the set n̂ ≡ {nα} shows weather the particular

single-particle state |α〉 is empty or occupied. Some arbitrary state n̂ looks like

n̂ ≡ {nα} ≡
(

n1, n2, n3, n4, n5, ...
)

=
(

1, 1, 0, 1, 0, ...
)

. (6.111)

Note, that the distribution n̂ defines also n =
∑

α nα. It is convenient, however, to keep notation n to

remember about the charge state of a system, below we use both notations |n, n̂〉 and short one |n̂〉 as

equivalent.

The other important point is that the distribution function fn(α) in the charge state |n〉 is not assumed

to be equilibrium, as previously (this condition is not specific to quantum dots with discrete energy levels,

the distribution function in metallic islands can also be nonequilibrium. However, in the parameter range,

typical for classical Coulomb blockade, the tunneling time is much smaller than the energy relaxation

time, and quasiparticle nonequilibrium effects are usually neglected).

With these new assumptions, the theory of sequential tunneling is quite the same, as was considered
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in the previous section. The master equation is [64, 65, 66, 67]

dp(n, n̂, t)

dt
=
∑

n̂′

(

Γn n−1
n̂n̂′ p(n− 1, n̂′, t) + Γn n+1

n̂n̂′ p(n+ 1, n̂′, t)
)

−
∑

n̂′

(

Γn−1 n
n̂′n̂ + Γn+1 n

n̂′n̂

)

p(n, n̂, t) + I {p(n, n̂, t)} , (6.112)

where p(n, n̂, t) is now the probability to find the system in the state |n, n̂〉, Γn n−1
n̂n̂′ is the transition rate

from the state with n − 1 electrons and single level occupation n̂′ into the state with n electrons and

single level occupation n̂. The sum is over all states n̂′, which are different by one electron from the state

n̂. The last term is included to describe possible inelastic processes inside the system and relaxation to

the equilibrium function peq(n, n̂). In principle, it is not necessary to introduce such type of dissipation

in calculation, because the current is in any case finite. But the dissipation may be important in large

systems and at finite temperatures. Besides, it is necessary to describe the limit of classical single-electron

transport, where the distribution function of qausi-particles is assumed to be equilibrium. Below we shall

not take into account this term, assuming that tunneling is more important.

While all considered processes are, in fact, single-particle tunneling processes, we arrive at

dp(n̂, t)

dt
=
∑

β

(

δnβ1Γn n−1
β p(n̂, nβ = 0, t) + δnβ0Γn n+1

β p(n̂, nβ = 1, t)
)

−

∑

β

(

δnβ1Γn−1 n
β + δnβ0Γn+1 n

β

)

p(n̂, t), (6.113)

where the sum is over single-particle states. The probability p(n̂, nβ = 0, t) is the probability of the state

equivalent to n̂, but without the electron in the state β. Consider, for example, the first term in the

right part. Here the delta-function δnβ1 shows, that this term should be taken into account only if the

single-particle state β in the many-particle state n̂ is occupied, Γn n−1
β is the probability of tunneling from

the lead to this state, p(n̂, nβ = 0, t) is the probability of the state n̂′, from which the system can come

into the state n̂.

The transitions rates are defined by the same golden rule expressions, as before, but with explicitly

shown single-particle state α

Γn+1 n
Lα =

2π

~

∣

∣

∣

〈

n+ 1, nα = 1|ĤTL|n, nα = 0
〉∣

∣

∣

2

δ(Ei − Ef ) =

2π

~

∑

k

|Vkα|2 fkδ(∆E
+
nα − Ek), (6.114)

Γn−1 n
Lα =

2π

~

∣

∣

∣

〈

n− 1, nα = 0|ĤTL|n, nα = 1
〉∣

∣

∣

2

δ(Ei −Ef ) =

2π

~

∑

k

|Vkα|2 (1 − fk) δ(∆E+
n−1 α − Ek), (6.115)



6.2. From coherent transport to sequential tunneling (basics) 167

-1 0 1 2 3

VG

G
 [a

rb
. u

.]

Figure 6.5: Linear conductance of a QD as a function of the gate voltage at different temperatures T = 0.01EC ,
T = 0.03EC , T = 0.05EC , T = 0.1EC , T = 0.15EC (lower curve).

there is no occupation factors (1 − fα), fα because this state is assumed to be empty in the sense of the

master equation (6.113). The energy of the state is now included into the addition energy.

Using again the level-width function

Γi=L,R α(E) =
2π

~

∑

k

|Vik,α|2δ(E − Ek). (6.116)

we obtain

Γn+1 n
α = ΓLαf

0
L(∆E+

nα) + ΓRαf
0
R(∆E+

nα), (6.117)

Γn−1 n
α = ΓLα

(

1 − f0
L(∆E+

n−1 α)
)

+ ΓRα

(

1 − f0
R(∆E+

n−1 α)
)

. (6.118)

Finally, the current from the left or right contact to a system is

Ji=L,R = e
∑

α

∑

n̂

p(n̂)Γiα

(

δnα0f
0
i (∆E+

nα) − δnα1(1 − f0
i (∆E+

nα))
)

. (6.119)

The sum over α takes into account all possible single particle tunneling events, the sum over states n̂

summarize probabilities p(n̂) of these states.

(iii) Linear conductance The linear conductance can be calculated analytically [64, 66]. Here we

present the final result:

G =
e2

T

∑

α

∞
∑

n=1

ΓLαΓRα

ΓLα + ΓRα
Peq(n, nα = 1)

[

1 − f0(∆E+
n−1 α)

]

, (6.120)
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Figure 6.6: Coulomb staircase.

where Peq(n, nα = 1) is the joint probability that the quantum dot contains n electrons and the level α

is occupied

Peq(n, nα = 1) =
∑

n̂

peq(n̂)δ



n−
∑

β

nβ



 δnα1, (6.121)

and the equilibrium probability (distribution function) is determined by the Gibbs distribution in the

grand canonical ensemble:

peq(n̂) =
1

Z
exp

[

− 1

T

(

∑

α

ε̃α + E(n)

)]

. (6.122)

A typical behaviour of the conductance as a function of the gate voltage at different temperatures

is shown in Fig. 6.5. In the resonant tunneling regime at low temperatures T � ∆ε the peak height is

strongly temperature-dependent. It is changed by classical temperature dependence (constant height) at

T � ∆ε.

(iv)Transport at finite bias voltage At finite bias voltage we find new manifestations of the interplay

between single-electron tunneling and resonant free-particle tunneling.

Now, let us consider the current-voltage curve of the differential conductance (Fig. 6.7). First of

all, Coulomb staircase is reproduced, which is more pronounced, than for metallic islands, because the

density of states is limited by the available single-particle states and the current is saturated. Besides,

small additional steps due to discrete energy levels appear. This characteristic behaviour is possible for

large enough dots with ∆ε� EC . If the level spacing is of the oder of the charging energy ∆ε ∼ EC , the

Coulomb blockade steps and discrete-level steps look the same, but their statistics (position and height

distribution) is determined by the details of the single-particle spectrum and interactions [67].

Finally, let us consider the contour plot of the differential conductance (Fig. 6.7). Ii is essentially dif-

ferent from those for the metallic island. First, it is not symmetric in the gate voltage, because the energy
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Figure 6.7: Contour plot of the differential conductance.

spectrum is restricted from the bottom, and at negative bias all the levels are above the Fermi-level (the

electron charge is negative, and a negative potential means a positive energy shift). Nevertheless, exist-

ing stability patterns are of the same origin and form the same structure. The qualitatively new feature

is additional lines correspondent to the additional discrete-level steps in the voltage-current curves.In

general, the current and conductance of quantum dots demonstrate all typical features of discrete-level

systems: current steps, conductance peaks. Without Coulomb interaction the usual picture of resonant

tunneling is reproduced. In the limit of dense energy spectrum ∆ε → 0 the sharp single-level steps are

merged into the smooth Coulomb staircase.

6.2.2.2 Vibrons and Franck-Condon blockade

(i) Linear vibrons Vibrons are quantum local vibrations of nanosystems (Fig. 6.8), especially impor-

tant in flexible molecules. In the linear regime the small displacements of the system can be expressed as

linear combinations of the coordinates of the normal modes xq, which are described by a set of independent

x̂
αε

βε
tαβ

Figure 6.8: A local molecular vibration. The empty circles show the equilibrium positions of the atoms. The
energies εα, εβ and the overlap integral tαβ are perturbed.
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linear oscillators with the Hamiltonian

Ĥ
(0)
V =

∑

q

(

p̂2
q

2mq
+

1

2
mqω

2
q x̂

2
q

)

. (6.123)

The parametersmq are determined by the microscopic theory, and p̂q (p̂q = −i~ ∂
∂xq

in the x-representation)

is the momentum conjugated to x̂q, [x̂q, p̂q]− = i~.

Let us outline briefly a possible way to calculate the normal modes of a molecule, and the relation

between the positions of individual atoms and collective variables. We assume, that the atomic con-

figuration of a system is determined mainly by the elastic forces, which are insensitive to the transport

electrons. The dynamics of this system is determined by the atomic Hamiltonian

Ĥat =
∑

n

P 2
n

2Mn
+W ({Rn}) , (6.124)

where W ({Rn}) is the elastic energy, which includes also the static external forces and can be calculated

by some ab initio method. Now define new generalized variables qi with corresponding momentum pi (as

the generalized coordinates not only atomic positions, but also any other convenient degrees of freedom

can be considered, for example, molecular rotations, center-of-mass motion, etc.)

Ĥat =
∑

i

p2
i

2mi
+W ({qi}) , (6.125)

”masses” mi should be considered as some parameters. The equilibrium coordinates q0
i are defined from

the energy minimum, the set of equations is

∂W
(

{q0i }
)

∂qi
= 0. (6.126)

The equations for linear oscillations are obtained from the next order expansion in the deviations

∆qi = qi − q0i

Ĥat =
∑

i

p2
i

2mi
+
∑

ij

∂2W
(

{q0j }
)

∂qi∂qj
∆qi∆qj . (6.127)

This Hamiltonian describes a set of coupled oscillators. Finally, applying the canonical transformation

from ∆qi to new variables xq (q is now the index of independent modes)

xq =
∑

i

Cqiqi (6.128)

we derive the Hamiltonian (6.123) together with the frequencies ωq of vibrational modes.
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It is useful to introduce the creation and annihilation operators

a†q =
1√
2

(

√

mqωq

~
x̂q +

i
√

mqωq~
p̂q

)

, (6.129)

aq =
1√
2

(

√

mqωq

~
x̂q −

i
√

mqωq~
p̂q

)

, (6.130)

in this representation the Hamiltonian of free vibrons is (~ = 1)

Ĥ
(0)
V =

∑

q

ωqa
†
qaq. (6.131)

(ii) Electron-vibron Hamiltonian A system without vibrons is described as before by a basis set of

states |α〉 with energies εα and inter-state overlap integrals tαβ , the model Hamiltonian of a noninteracting

system is

Ĥ
(0)
S =

∑

α

(εα + eϕα(t)) d†αdα +
∑

α6=β

tαβd
†
αdβ , (6.132)

where d†α,dα are creation and annihilation operators in the states |α〉, and ϕα(t) is the (self-consistent)

electrical potential (6.108). The index α is used to mark single-electron states (atomic orbitals) including

the spin degree of freedom.

To establish the Hamiltonian describing the interaction of electrons with vibrons in nanosystems, we

can start from the generalized Hamiltonian

ĤS =
∑

α

ε̃α ({xq}) d†αdα +
∑

α6=β

tαβ ({xq}) d†αdβ , (6.133)

where the parameters are some functions of the vibronic normal coordinates xq. Note that we consider now

only the electronic states, which were excluded previously from the Hamiltonian (6.124), it is important

to prevent double counting.

Expanding to the first order near the equilibrium state we obtain

Ĥev =
∑

α

∑

q

∂ε̃α(0)

∂xq
xqd
†
αdα +

∑

α6=β

∑

q

∂tαβ(0)

∂xq
xqd
†
αdβ , (6.134)

where ε̃α(0) and tαβ(0) are unperturbed values of the energy and the overlap integral. In the quantum

limit the normal coordinates should be treated as operators, and in the second-quantized representation

the interaction Hamiltonian is

Ĥev =
∑

αβ

∑

q

λq
αβ(aq + a†q)d†αdβ . (6.135)

This Hamiltonian is similar to the usual electron-phonon Hamiltonian, but the vibrations are like localized

phonons and q is an index labeling them, not the wave-vector. We include both diagonal coupling, which

describes a change of the electrostatic energy with the distance between atoms, and the off-diagonal
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coupling, which describes the dependence of the matrix elements tαβ over the distance between atoms.

The full Hamiltonian

Ĥ = Ĥ0
S + ĤV + ĤL + ĤR + ĤT (6.136)

is the sum of the noninteracting Hamiltonian Ĥ0
S , the Hamiltonians of the leads ĤR(L), the tunneling

Hamiltonian ĤT describing the system-to-lead coupling, the vibron Hamiltonian ĤV including electron-

vibron interaction and coupling of vibrations to the environment (describing dissipation of vibrons).

Vibrons and the electron-vibron coupling are described by the Hamiltonian (~ = 1)

ĤV =
∑

q

ωqa
†
qaq +

∑

αβ

∑

q

λq
αβ(aq + a†q)d†αdβ + Ĥenv. (6.137)

The first term represents free vibrons with the energy ~ωq. The second term is the electron-vibron

interaction. The rest part Ĥenv describes dissipation of vibrons due to interaction with other degrees of

freedom, we do not consider the details in this chapter.

The Hamiltonians of the right (R) and left (L) leads read as usual

Ĥi=L(R) =
∑

kσ

(εikσ + eϕi)c
†
ikσcikσ, (6.138)

ϕi are the electrical potentials of the leads. Finally, the tunneling Hamiltonian

ĤT =
∑

i=L,R

∑

kσ,α

(

Vikσ,αc
†
ikσdα + V ∗ikσ,αd

†
αcikσ

)

(6.139)

describes the hopping between the leads and the molecule. A direct hopping between two leads is

neglected.

The simplest example of the considered model is a single-level model (Fig. 6.9) with the Hamiltonian

Ĥ = ε̃0d
†d+ ω0a

†a+ λ
(

a† + a
)

d†d+
∑

ik

[

ε̃ikc
†
ikcik + Vikc

†
ikd+ h.c.

]

, (6.140)

L R
0εLΓ RΓ

0ω

Figure 6.9: Single-level electron-vibron model.
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where the first and the second terms describe free electron state and free vibron, the third term is electron-

vibron interaction, and the rest is the Hamiltonian of the leads and tunneling coupling (i = L,R is the

lead index).

The other important case is a center-of-mass motion of molecules between the leads (Fig. 6.10). Here

not the internal overlap integrals, but the coupling to the leads Vikσ,α(x) is fluctuating. This model is

easily reduced to the general model (6.137), if we consider additionaly two not flexible states in the left

and right leads (two atoms most close to a system), to which the central system is coupled (shown by

the dotted circles).

Tunneling Hamiltonian includes x-dependent matrix elements, considered in linear approximation

HT =
∑

i=L,R

∑

kσ,α

(

Vikσ,α(x̂)c†ikσdα + h.c.
)

, (6.141)

VL,R(x) = V0e
∓x̂/L ≈ V0

(

1∓ x̂

L

)

. (6.142)

Consider now a single-level molecule (α ≡ 0) and extend our system, including two additional states

from the left (α ≡ l) and right (α ≡ r) sides of a molecule, which are coupled to the central state through

x-dependent matrix elements, and to the leads in a usual way through ΓL(R). Then the Hamiltonian is

of linear electron-vibron type

ĤM+V =
∑

α=l,0,r

(εα + eϕα) d†αdα + tl(d
†
l d0 + h.c.) + tr(d†rd0 + h.c.)+

+ ω0a
†a+ (a+ a†)

(

λ0d
†
0d0 − λl(d

†
l d0 + h.c.) + λr(d†rd0 + h.c.)

)

. (6.143)

(iii) Local polaron and canonical transformation Now let us start to consider the situation, when

the electron-vibron interaction is strong. For an isolated system with the Hamiltonian, including only

L R
0ε( )L xΓ ( )R xΓ

0ω

E

x0

Figure 6.10: A center-of-mass vibration.
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diagonal terms,

ĤS+V =
∑

α

ε̃αd
†
αdα +

∑

q

ωqa
†
qaq +

∑

α

∑

q

λq
α(aq + a†q)d†αdα, (6.144)

the problem can be solved exactly. This solution, as well as the method of the solution (canonical

transformation), plays an important role in the theory of electron-vibron systems, and we consider it in

detail.

Let’s start from the simplest case. The single-level electron-vibron model is described by the Hamil-

tonian

ĤS+V = ε̃0d
†d+ ω0a

†a+ λ
(

a† + a
)

d†d, (6.145)

where the first and the second terms describe free electron state and free vibron, and the third term is

the electron-vibron interaction.

This Hamiltonian is diagonalized by the canonical transformation (called ”Lang-Firsov” or ”polaron”)

[69, 70, 71]

H̄ = Ŝ−1ĤŜ, (6.146)

with

Ŝ = exp

[

− λ

ω0

(

a† − a
)

d†d

]

, (6.147)

the Hamiltonian (6.145) is transformed as

H̄S+V = Ŝ−1ĤS+V Ŝ = ε̃0d̄
†d̄+ ω0ā

†ā+ λ
(

ā† + ā
)

d̄†d̄, (6.148)

it has the same form as (6.145) with new operators, it is a trivial consequence of the general property

Ŝ−1
(

f̂1f̂2f̂3...
)

Ŝ = (Ŝ−1f̂1Ŝ)(Ŝ−1f̂2Ŝ)(Ŝ−1f̂3Ŝ)... = f̄1f̄2f̄3... (6.149)

and new single-particle operators are

ā = Ŝ−1aŜ = a− λ
ω0
d†d, (6.150)

ā† = Ŝ−1a†Ŝ = a† − λ
ω0
d†d, (6.151)

d̄ = Ŝ−1dŜ = exp
[

− λ
ω0

(

a† − a
)

]

d, (6.152)

d̄† = Ŝ−1d†Ŝ = exp
[

λ
ω0

(

a† − a
)

]

d†. (6.153)

Substituting these expressions into (6.148) we get finally

H̄S+V =

(

ε̃0 −
λ2

ω0

)

d†d+ ω0a
†a. (6.154)

We see that the electron-vibron Hamiltonian (6.145) is equivalent to the free-particle Hamiltonian

(6.154). This equivalence means that any quantum state |ψ̄λ〉, obtained as a solution of the Hamiltonian
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(6.154) is one-to-one equivalent to the state |ψλ〉 as a solution of the initial Hamiltonian (6.145), with

the same matrix elements for any operator

〈ψ̄λ|f̄ |ψ̄λ〉 = 〈ψλ|f̂ |ψλ〉, (6.155)

f̄ = Ŝ−1f̂ Ŝ, (6.156)

|ψ̄λ〉 = Ŝ−1|ψλ〉. (6.157)

It follows immediately that the eigenstates of the free-particle Hamiltonian are

|ψ̄nm〉 = |n = 0, 1;m = 0, 1, 2, ...〉 = (d†)n (a†)m

√
m!

|0〉, (6.158)

and the eigen-energies are

E(n,m) =

(

ε̃0 −
λ2

ω0

)

n+ ω0m. (6.159)

The eigenstates of the initial Hamiltonian (6.145) are

|ψnm〉 = Ŝ|ψ̄nm〉 = e−
λ

ω0
(a†−a)d†d(d†)n (a†)m

√
m!

|0〉, (6.160)

with the same quantum numbers (n,m) and the same energies (6.159). This representation of the

eigenstates demonstrates clearly the collective nature of the excitations, but it is inconvenient for practical

calculations.

Now let us consider the polaron transformation (6.146)-(6.147) applied to the tunneling Hamiltonian

ĤT =
∑

i=L,R

∑

kσ

(

Vikσc
†
ikσd+ V ∗ikσd

†cikσ

)

(6.161)

The electron operators in the left and right leads cikσ are not changed by this operation, but the dot

operators dα, d†α are changed in accordance with (6.152) and (6.153). So that transformed Hamiltonian

is

H̄T =
∑

i=L,R

∑

kσ

(

Vikσe
− λ

ω0
(a†−a)c†ikσd+ V ∗ikσe

λ
ω0

(a†−a)d†cikσ

)

. (6.162)

Now we see clear the problem: while the new dot Hamiltonian (6.154) is very simple and exactly

solvable, the new tunneling Hamiltonian (6.162) is complicated. Moreover, instead of one linear electron-

vibron interaction term, the exponent in (6.162) produces all powers of vibronic operators. Actually, we

simply remove the complexity from one place to the other. This approach works well, if the tunneling

can be considered as a perturbation, we consider it in the next section. In the general case the problem

is quite difficult, but in the single-particle approximation it can be solved exactly [72, 73, 74, 75].

To conclude, after the canonical transformation we have two equivalent models: (1) the initial model

(6.145) with the eigenstates (6.160); and (2) the fictional free-particle model (6.154) with the eigenstates
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(6.158). We shall call this second model polaron representation. The relation between the models is

established by (6.155)-(6.157). It is also clear from the Hamiltonian (6.148), that the operators d̄†, d̄, ā†,

and ā describe the initial electrons and vibrons in the fictional model.

(iv) Inelastic tunneling in the single-particle approximation In this section we consider a special

case of a single particle transmission through an electron-vibron system. It means that we consider a

system coupled to the leads, but without electrons in the leads. This can be considered equivalently as

the limit of large electron level energy ε0 (far from the Fermi surface in the leads).

The inelastic transmission matrix T (ε′, ε) describes the probability that an electron with energy ε,

incident from one lead, is transmitted with the energy ε′ into a second lead. The transmission function

can be defined as the total transmission probability

T (ε) =

∫

T (ε′, ε)dε′. (6.163)

For a noninteracting single-level system the transmission matrix is

T 0(ε′, ε) =
ΓR(ε)ΓL(ε)δ(ε− ε′)

(ε− ε0 − Λ(ε))2 + (Γ(ε)/2)2
, (6.164)

where Γ(ε) = ΓL(ε) + ΓR(ε) is the level-width function, and Λ(ε) is the real part of the self-energy.

We can do some general conclusions, based on the form of the tunneling Hamiltonian (6.162). Ex-

panding the exponent in the same way as before, we get

H̄T =
∑

i=L,R

∑

kσ

(

Vikσc
†
ikσd

[

α0 +

∞
∑

m=1

αm

(

(a†)m + am
)

]

+ h.c.

)

, (6.165)

with the coefficients

αm =

(

− λ

ω0

)m
e−(λ/ω0)

2/2

m!
. (6.166)

This complex Hamiltonian has very clear interpretation, the tunneling of one electron from the right to

the left lead is accompanied by the excitation of vibrons. The energy conservation implies that

ε− ε′ = ±mω0, (6.167)

so that the inelastic tunneling with emission or absorption of vibrons is possible.

The exact solution is possible in the wide-band limit. [72, 73, 74, 75]

It is convenient to introduce the dimensionless electron-vibron coupling constant

g =

(

λ

ω0

)2

. (6.168)
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At zero temperature the solution is

T (ε′, ε) = ΓLΓRe
−2g

∞
∑

m=0

gm

m!
δ(ε− ε′ −mω0)

×

∣

∣

∣

∣

∣

∣

m
∑

j=0

(−1)j m!

j!(m− j)!

∞
∑

l=0

gl

l!

1

ε− ε0 + gω0 − (j + l)ω0 + iΓ/2

∣

∣

∣

∣

∣

∣

2

, (6.169)

the total transmission function T (ε) is trivially obtain by integration over ε′. The representative results

are presented in Figs. 6.11 and 6.12.

At finite temperature the general expression is too cumbersome, and we present here only the expres-

sion for the total transmission function

T (ε) =
ΓLΓR

Γ
e−g(1 + 2nω)

∫ ∞

−∞

dt

× exp

(

−Γ

2
|t| + i(ε− ε0 + gω0)t− g

[

(1 + nω)e−iω0t + nωe
iω0t
]

)

, (6.170)

where nω is the equilibrium number of vibrons.

(v) Master equation When the system is weakly coupled to the leads, the polaron representation

(6.154), (6.162) is a convenient starting point. Here we consider how the sequential tunneling is modified

by vibrons.

The master equation for the probability p(n,m, t) to find the system in one of the polaron eigenstates

(6.158) can be written as

dp(n,m)

dt
=
∑

n′m′

Γnn′

mm′p(n′,m′) −
∑

n′m′

Γn′n
m′mp(n,m) + IV [p], (6.171)

where the first term describes tunneling transition into the state |n,m〉, and the second term – tunneling

transition out of the state |n,m〉, IV [p] is the vibron scattering integral describing the relaxation to

equilibrium. The transition rates Γnn′

mm′ should be found from the Hamiltonian (6.162).

Taking into account all possible single-electron tunneling processes, we obtain the incoming tunneling

rate

Γ10
mm′ =

2π

~

∑

ikσ

f0
i (Eikσ)

∣

∣

〈

ik̄, 1,m
∣

∣H̄T

∣

∣ ik, 0,m′
〉∣

∣

2
δ(E0m′ + Eikσ − E1m)

=
2π

~

∑

ikσ

f0
i (Eikσ) |Vikσ|2

∣

∣

∣

〈

m
∣

∣

∣e
λ

ω0
(a†−a)

∣

∣

∣m′
〉∣

∣

∣

2

δ(E0m′ + Eikσ − E1m)

=
∑

i=L,R

Γi(E1m − E0m′) |Mmm′ |2 f0
i (E1m − E0m′), (6.172)

where

Mmm′ =
〈

m
∣

∣

∣e
λ

ω0
(a†−a)

∣

∣

∣m′
〉

(6.173)
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is the Franck-Condon matrix element. We use usual short-hand notations: |ik, n,m〉 is the state with

occupied k-state in the i−th lead, n electrons, and m vibrons, while |ik̄, n,m〉 is the state with unoccupied

k-state in the i−th lead, Enm is the polaron energy (6.159).

Similarly, the outgoing rate is

Γ01
mm′ =

∑

i=L,R

Γi(E1m′ −E0m) |Mmm′ |2
(

1 − f0
i (E1m′ − E0m)

)

. (6.174)

The current (from the left or right lead to the system) is

Ji=L,R(t) = e
∑

mm′

(

Γ10
imm′p(0,m′) − Γ01

imm′p(1,m′)
)

. (6.175)

The system of equations (6.171)-(6.175) solves the transport problem in the sequential tunneling

regime.

(v) Franck-Condon blockade Now let us consider some details of the tunneling at small and large

values of the electro-vibron coupling parameter g =
(

λ
ω0

)2

.

The matrix element (6.173) can be calculated analytically, it is symmetric in m−m′ and for m < m′

is

Mm<m′ =

m
∑

l=0

(−g)l
√
m!m′!e−g/2g(m′−m)/2

l!(m− l)!(l +m′ −m)!
. (6.176)

The lowest order elements are

M0m = e−g/2 g
m/2

√
m!

, (6.177)

M11 = (1 − g)e−g/2, (6.178)

M12 =
√

2g
(

1 − g

2

)

e−g/2... (6.179)

The characteristic feature of these matrix elements is so-called Franck-Condon blockade [87, 88],

illustrated in Fig. 6.13 for the matrix element M0m. From the picture, as well as from the analytical

formulas, it is clear, that in the case of strong electron-vibron interaction the tunneling with small change

of the vibron quantum number is suppressed exponentially, and only the tunneling through high-energy

states is possible, which is also suppressed at low bias voltage and low temperature. Thus, the electron

transport through a system (linear conductance) is very small.

There are several interesting manifestations of the Franck-Condon blockade.

The life-time of the state |n,m〉 is determined by the sum of the rates of all possible processes which

change this state in the assumption that all other states are empty

τ−1
nm =

∑

n′m′

Γn′n
m′m. (6.180)

As an example, let us calculate the life-time of the neutral state |0, 0〉, which has the energy higher
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than the charged ground state |1, 0〉.

τ−1
00 =

∑

n′m′

Γn′0
m′0 =

∑

m

∑

i=L,R

Γi(E1m − E00) |Mm0|2 f0
i (E1m − E00). (6.181)

In the wide-band limit we obtain the simple analytical expression

τ−1
00 = Γ

∑

m

e−g g
m

m!
f0

(

ε̃0 −
λ2

ω0
+ ω0m

)

. (6.182)

The corresponding expression for the life-time of the charged state (which can be excited by thermal

fluctuations) is

τ−1
10 = Γ

∑

m

e−g g
m

m!
f0

(

−ε̃0 +
λ2

ω0
+ ω0m

)

. (6.183)

The result of the calculation is shown in Fig. 6.14, it is clear seen that the tunneling from the state

|0, 0〉 to the charged state and from the state |1, 0〉 to the neutral state is exponentially suppressed in

comparison with the bare tunneling rate Γ at large values of the electron-vibron interaction constant λ.

This polaron memory effect can be used to create nano-memory and nano-switches. At finite voltage

the switching between two states is easy accessible through the excited vibron states. It can be used to

switch between memory states.

The other direct manifestation of the Franck-Condon blockade, – suppression of the linear conduc-

tance, was considered in Refs. [87, 88].
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Figure 6.11: Transmission function as a function of energy at different electron-vibron coupling: g = 0.1 (thin
solid line), g = 1 (dashed line), and g = 3 (thick solid line), at Γ = 0.1.
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Figure 6.12: Transmission function as a function of energy at different coupling to the leads: Γ = 0.01 (thin solid
line), Γ = 0.1 (dashed line), and Γ = 1 (thick solid line), at g = 3.
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Figure 6.13: Franck-Condon matrix elements M0m for weak (g = 0.1, squares), intermediate (g = 1, triangles),
and strong (g = 10, circles) electron-vibron interaction. Lines are the guides for eyes.
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Figure 6.14: The inverse life-time (τΓ)−1 as a function of λ/ω0 at optimal electron level position ε0 = λ2/2ω0

for neutral state (thin solid line), and for the charged state (dashed line), and for the neutral state at other level
position ε0 = λ2/4ω0 (thick solid line).
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6.3 Nonequilibrium Green function theory of transport

6.3.1 Standard transport model: a nanosystem between ideal leads

First of all, we formulate a standard discrete-level model to describe nanoscale interacting quantum sys-

tems (quantum dot, system of quantum dots, molecule, below ”nanosystem”, ”central system”, or simply

”system”) coupled to free conduction electrons in the leads. We include the Coulomb interaction with

the help of the Anderson-Hubbard Hamiltonan to be able to describe correlation effects, such as Coulomb

blockade and Kondo effect, which could dominate at low temperatures. At high temperatures or weak

interaction the self-consistent mean-field effects are well reproduced by the same model. Furthermore,

electrons are coupled to vibrational modes, below we use the electron-vibron model introduced previously.

(i) The model Hamiltonian The full Hamiltonian is the sum of the free system Hamiltonian Ĥ
(0)
S ,

the inter-system electron-electron interaction Hamiltonian ĤC , the vibron Hamiltonian ĤV including

the electron-vibron interaction and coupling of vibrations to the environment (dissipation of vibrons),

the Hamiltonians of the leads ĤR(L), and the tunneling Hamiltonian ĤT describing the system-to-lead

coupling

Ĥ = ĤS + ĤC + ĤV + ĤL + ĤR + ĤT . (6.184)

An isolated noninteracting nanosystem is described as a set of discrete states |α〉 with energies εα and

inter-orbital overlap integrals tαβ by the following model Hamiltonian:

Ĥ
(0)
S =

∑

α

(εα + eϕα(t)) d†αdα +
∑

α6=β

tαβd
†
αdβ , (6.185)

where d†α,dα are creation and annihilation operators in the states |α〉, and ϕα(t) is the effective (self-

consistent) electrical potential. The index α is used to mark single-electron states (e.g. atomic orbitals)

including the spin degree of freedom. In the eigenstate (molecular orbital) representation the second term

is absent and the Hamiltonian is diagonal.

For molecular transport the parameters of a model are to be determined by ab initio methods or

considered as semi-empirical. This is a compromise, which allows us to consider complex molecules with

a relatively simple model.

The Hamiltonians of the right (R) and left (L) leads are

Ĥi=L(R) =
∑

kσ

(εikσ + eϕi(t))c
†
ikσcikσ, (6.186)

ϕi(t) are the electrical potentials of the leads, the index k is the wave vector, but can be considered

as representing an other conserved quantum number, σ is the spin index, but can be considered as a

generalized channel number, describing e.g. different bands or subbands in semiconductors. Alternatively,

the tight-binding model can be used also for the leads, then (6.186) should be considered as a result of

the Fourier transformation. The leads are assumed to be noninteracting and equilibrium.
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The tunneling Hamiltonian

ĤT =
∑

i=L,R

∑

kσ,α

(

Vikσ,αc
†
ikσdα + V ∗ikσ,αd

†
αcikσ

)

(6.187)

describes the hopping between the leads and the system. The direct hopping between two leads is ne-

glected (relatively weak molecule-to-lead coupling case). Note, that the direct hoping between equilibrium

leads can be easy taken into account as an additional independent current channel.

The Coulomb interaction inside a system is described by the Anderson-Hubbard Hamiltonian

ĤC =
1

2

∑

α6=β

Uαβn̂αn̂β . (6.188)

This Hamiltonian is used usually only for the short-range part of Coulomb interaction. The long-range

interactions can be better introduced through the self-consistent electrical potential ϕα, which is deter-

mined by the Poison equation with the average electron density.

Vibrations and the electron-vibron coupling are described by the Hamiltonian

ĤV =
∑

q

~ωqa
†
qaq +

∑

αβ

∑

q

λq
αβ(aq + a†q)d†αdβ + Ĥe. (6.189)

Here vibrations are considered as localized phonons and q is the index labeling them, not the wave-vector.

The first term describes free vibrons with the energy ~ωq. The second term represents the electron-vibron

interaction. The third term describes the coupling to the environment and the dissipation of vibrons.

We include both diagonal coupling, which originates from a change of the electrostatic energy with the

distance between atoms, and the off-diagonal coupling, which can be obtained from the dependence of

the matrix elements tαβ over the distance between atoms.

(ii) Nonequilibrium current and charge To connect the microscopic description of a system with

the macroscopic (electrodynamic) equations and calculate the observables, we need the expressions for

the nonequilibrium electrical charge of the system and the current between the system and the leads.

The charge in a nonequilibrium state is given by (Q0 is the background charge)

QS(t) = e
∑

α

〈

d†αdα

〉

−Q0. (6.190)

To calculate the current we find the time evolution of the particle number operator N̂S =
∑

α d
†
αdα

due to tunneling from the left (i = L) or right (i = R) contact.

The current from the left (i = L) or right (i = R) contact to the nanosystem is determined by (note,

that we consider e as the charge of the electron (negative) or the hole (positive))

Ji(t) = −e
〈(

dNS

dt

)

i

〉

= − ie
~

〈

[H
(i)
T , NS ]

〉

, (6.191)
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where

H
(i)
T =

∑

kσ,α

(

Vikσ,αc
†
ikσdα + V ∗ikσ,αd

†
αcikσ

)

(6.192)

is the Hamiltonian of the coupling to the corresponding contact. The current is determined by this only

part of the full Hamiltonian (6.136), because all other terms commute with N̂S .

Applying the commutation relation

[

dα, d
†
βdβ

]

= dαd
†
βdβ − d†βdβdα =dαd

†
βdβ + d†βdαdβ =

(dαd
†
β + δαβ − dαd

†
β)dβ = δαβdα, (6.193)

one obtains finally

Ji(t) =
ie

~

∑

kσ,α

[

Vikσ,α

〈

c†ikσdα

〉

− V ∗ikσ,α

〈

d†αcikσ

〉

]

. (6.194)

(iii) Density matrix and NGF The averages of the operators in Eqs. (6.190) and (6.194) are the

elements of the density matrix in the single-particle space

ραα(t) =
〈

d†α(t)dα(t)
〉

, (6.195)

ρα,ikσ(t) =
〈

c†ikσ(t)dα(t)
〉

. (6.196)

It is possible, also, to express it as a two-time Green function at equal times

QS(t) = e
∑

α

ραα(t) = −ie
∑

α

G<
αα(t, t), (6.197)

Ji(t) =
2e

~
Im





∑

kσ,α

Vikσ,αρα,ikσ(t)



 =
2e

~
Re





∑

kσ,α

Vikσ,αG
<
α,ikσ(t, t)



 , (6.198)

where we define the system-to-lead lesser Green function

G<
α,ikσ(t1, t2) = i

〈

c†ikσ(t2)dα(t1)
〉

, (6.199)

while nonequilibrium charge distribution of the molecule is determined by the system lesser function

G<
αβ(t1, t2) = i

〈

d†β(t2)dα(t1)
〉

. (6.200)

One can ask: what is the advantage to use the more complex two-time Green functions instead of

density matrices? There are several reasons. First of all, NGF give, as we shall see below, a clear

description of both density of states and distribution of particles over this states. Then, the equations

of motion including interactions and the influence of environment can be obtained with the help of
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a diagrammatic technique, and (very important) all diagrammatic results of equilibrium theory can be

easily incorporated. Retardation effects are conveniently taken into account by two-time Green functions.

And, ... finally, one can always go back to the density matrix when necessary.

It is important to note, that the single-particle density matrix (6.195) should not be mixed up with

the density matrix in the basis of many-body eigenstates.

In these review we consider different methods. The density matrix can be determined from the master

equation. For Green functions the EOM method or Keldysh method can be applied. Traditionally, the

density matrix is used in the case of very weak system-to-lead coupling, while the NGF methods are more

successful in the description of strong and intermediate coupling to the leads. The convenience of one or

other method is determined essentially by the type of interaction. Our aim is to combine the advantages

of both methods.

6.3.2 Nonequilibrium Green functions: definition and properties

In the previous section we found, that the current through a system (as well as other observables) can be

expressed through nonequilibrium Green functions. Here we give the definitions of retarded, advanced,

lesser, and greater Green functions and consider some simple examples. We also introduce a very impor-

tant concept of the Schwinger-Keldysh closed-time contour, and define contour Green functions. This

section is a little bit technical, but we need these definitions in the next sections.

6.3.2.1 Spectral - retarded (GR) and advanced (GA) functions

Definition Retarded Green function for fermions is defined as

GR
αβ(t1, t2) = −iθ(t1 − t2)

〈

[

cα(t1), c†β(t2)
]

+

〉

, (6.201)

where c†α(t), cα(t) are creation and annihilation time-dependent (Heisenberg) operators, [c, d]+ = cd+ dc

is the anti-commutator, 〈...〉 denotes averaging over equilibrium state.

We use notations α, β, ... to denote single-particle quantum states, the other possible notation is

more convenient for bulk systems

GR(x1, x2) = −iθ(t1 − t2)
〈

[

c(x1), c†(x2)
]

+

〉

, (6.202)

where x ≡ r, t, σ, ... or x ≡ k, t, σ, ..., etc. Some other types of notations can be found in the literature,

they are equivalent to (6.201).

The advanced function for fermions is defined as

GA
αβ(t1, t2) = iθ(t2 − t1)

〈

[

cα(t1), c†β(t2)
]

+

〉

. (6.203)
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Finally, retarded and advanced functions for bosons can be defined as

G̃R
αβ(t1, t2) = −iθ(t1 − t2)

〈

[

aα(t1), a†β(t2)
]

−

〉

, (6.204)

G̃A
αβ(t1, t2) = iθ(t2 − t1)

〈

[

aα(t1), a†β(t2)
]

−

〉

, (6.205)

where a†α(t), aα(t) are creation and annihilation boson operators, [a, b]− = ab− ba is the commutator.

Discussion of averaging The average value of any operator Ô can be written as 〈Ô〉 = 〈t|ÔS |t〉 in

the Schrödinger representation or 〈Ô〉 = 〈0|ÔH(t)|0〉 in the Heisenberg representation, where |0〉 is some

initial state. This initial state is in principle arbitrary, but in many-particle problems it is convenient

to take this state as an equilibrium state, consequently without time-dependent perturbation we obtain

usual equilibrium Green functions.

In accordance with this definition the Heisenberg operators cα(t), c†β(t), etc. are equal to the time-

independent Schrödinger operators at some initial time t0: cα(t0) = cα, etc. Density matrix of the system

is assumed to be equilibrium at this time ρ̂(t0) = ρ̂eq. Usually we can take t0 = 0 for simplicity, but if

we want to use t0 6= 0 the transformation to Heisenberg operators should be written as

f̂H(t) = eiĤ(t−t0)f̂Se−iĤ(t−t0). (6.206)

In fact, the initial conditions are not important because of dissipation (the memory about the initial

state is completely lost after the relaxation time). However, in some pathological cases, for example for

free noninteracting particles, the initial state determines the state at all times. Note also, that the initial

conditions can be more convenient formulated for Green functions itself, instead of corresponding initial

conditions for operators or wave functions.

Nevertheless, thermal averaging is widely used and we define it here explicitly. If we introduce the

basis of exact time-independent many-particle states |n〉 with energies En, the averaging over equilibrium

state can be written as

〈Ô〉 =
1

Z

∑

n

e−En/T
〈

n
∣

∣

∣
ÔH(t)

∣

∣

∣
n
〉

, Z =
∑

n

e−En/T . (6.207)

In the following when we use notations like
〈

Ô
〉

or
〈

Ψ
∣

∣

∣Ô(t)
∣

∣

∣Ψ
〉

, we assume the averaging with

density matrix (density operator) ρ̂
〈

Ô
〉

= Sp
(

ρ̂Ô
)

, (6.208)

for equilibrium density matrix and Heisenberg operators it is equivalent to (6.207).

Free-particle retarded function for fermions Now consider the simplest possible example – re-

tarded Green function for free particles (fermions).
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The free-particle Hamiltonian has equivalent form if one uses Schrödinger or Heisenberg operators

Ĥ =
∑

α

εαc
†
αcα =

∑

α

εαc
†
α(t)cα(t), (6.209)

because (here we assume t0 = 0)

c†α(t)cα(t) = eiĤtc†αe
−iĤteiĤtcαe

−iĤt

= eiĤtc†αcαe
−iĤt = c†αcα, (6.210)

where we used that c†αcα is commutative with the Hamiltonian Ĥ =
∑

α εαc
†
αcα.

From the definitions (6.201) and (6.207)

〈

[

cα(t1), c†β(t2)
]

+

〉

=
〈

cα(t1)c†β(t2) + c†β(t2)cα(t1)
〉

=

=
〈

eiĤt1cα(t1)e−iĤt1eiĤt2c†β(t2)e−iĤt2 + eiĤt2c†β(t2)e−iĤt2eiĤt1cα(t1)e−iĤt1
〉

=

= eiεβt2−iεαt1
〈

cαc
†
β + c†βcα

〉

= e−iεα(t1−t2)δαβ , (6.211)

GR
αβ(t1, t2) = −iθ(t1 − t2)

〈

[

cα(t1), c†β(t2)
]

+

〉

= −iθ(t1 − t2)e−iεα(t1−t2)δαβ , (6.212)

where we used some obvious properties of the creation and annihilation operators and commutation

relations.

We consider also the other method, based on the equations of motion for operators. From Liuville

– von Neuman equation we find (all c-operators are Heisenberg operators in the formula below, (t) is

omitted for shortness)

i
dcα(t)

dt
=[cα(t), H]−=

∑

β

εβ

[

cα, c
†
βcβ

]

−

=
∑

β

εβ

(

cαc
†
βcβ − c†βcβcα

)

=
∑

β

εβ

(

cαc
†
βcβ + c†βcαcβ

)

=
∑

β

εβ

(

cαc
†
β + c†βcα

)

cβ =
∑

β

εβδαβcβ =εαcα(t), (6.213)

so that Heisenberg operators for free fermions are

cα(t) = e−iεαtcα(0), c†α(t) = eiεαtc†α(0). (6.214)

Substituting these expressions into (6.201) we obtain again (6.212). Note also that if we take t0 6= 0,
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then Heisenberg operators for free fermions are

cα(t) = e−iεα(t−t0)cα(t0), c†α(t) = eiεα(t−t0)c†α(t0), (6.215)

but the result for the Green functions is just the same, because

〈

[

cα(t1), c†β(t2)
]

+

〉

=
〈

cα(t1)c†β(t2) + c†β(t2)cα(t1)
〉

=

= eiεβ(t2−t0)−iεα(t1−t0)
〈

cαc
†
β + c†βcα

〉

= e−iεα(t1−t2)δαβ . (6.216)

It is interesting to make Fourie-transform of this function. In equilibrium two-time function GR
αβ(t1, t2)

is a function of the time difference only, so that we define transform over time difference (t1 − t2)

GR(ε) =

∫ ∞

0

GR(t1 − t2)ei(ε+i0)(t1−t2)d(t1 − t2), (6.217)

we add infinitely small positive complex part to ε to make this integral well defined in the upper limit

(this is necessary for free particles without dissipation because function (6.212) oscillates at large times

τ = t1 − t2 and the integral (6.217) can not be calculated without i0 term. Then we obtain

GR
αβ(ε) =

δαβ

ε− εα + i0
. (6.218)

More generally, transformation (6.217) can be considered as the Laplas transformation with complex

argument z = ε+ iη.

For advanced function

GA
αβ(t1, t2) = iθ(t2 − t1)e−iεα(t1−t2)δαβ , (6.219)

the Fourier transform is given by

GA(ε) =

∫ 0

−∞

GA(t1 − t2)ei(ε−i0)(t1−t2)d(t1 − t2), (6.220)

with other sign of the term i0.

Spectral function Finally, we introduce the important combination of retarded and advanced func-

tions known as spectral or spectral weight function

Aαβ(ε) = i
(

GR
αβ(ε) −GA

αβ(ε)
)

, (6.221)

in equilibrium case Fourie-transformed retarded and advanced functions are complex conjugate GA(ε) =
(

GR(ε)
)∗

, and Aαβ(ε) = −2ImGR
αβ(ε).
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For free fermions the spectral function is

Aαβ(ε) = −2Im

(

δαβ

ε− εα + i0

)

= 2πδ(ε− εα)δαβ . (6.222)

The result is transparent – the function Aαβ(ε) is nonzero only at particle eigen-energies, so that

ρ(ε) =
1

2π
SpAαβ(ε) =

1

2π

∑

α

Aαα(ε) =
∑

α

δ(ε− εα) (6.223)

is the usual energy density of states. Note that the imaginary part i0 is necessary to obtain this result,

thus it is not only mathematical trick, but reflects the physical sense of the retarded Green function.

If we introduce finite relaxation time

GR
αβ(τ) = −iθ(τ)e−iεατ−γτδαβ , (6.224)

then the spectral function has familiar Lorentzian form

Aαβ(ε) =
2γδαβ

(ε− εα)2 + γ2
. (6.225)

Finally, spectral function has a special property, so-called sum rule, namely

∫ ∞

−∞

Aαβ(ε)
dε

2π
= δαβ . (6.226)

6.3.2.2 Kinetic - lesser (G<) and greater (G>) functions

Definition Spectral functions, described before, determine single-particle properties of the system, such

as quasiparticle energy, broadening of the levels (life-time), and density of states. These functions can be

modified in nonequilibrium state, but most important kinetic properties, such as distribution function,

charge, and current, are determined by lesser Green function

G<
αβ(t1, t2) = i

〈

c†β(t2)cα(t1)
〉

. (6.227)

Indeed, density matrix is the same as equal-time lesser function

ραβ(t) =
〈

c†β(t)cα(t)
〉

= −iG<
αβ(t, t). (6.228)

the number of particles in state |α〉 (distribution function) is

nα(t) =
〈

c†α(t)cα(t)
〉

= −iG<
αα(t, t), (6.229)
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the tunneling current is

J(t) =
ie

~

∑

kq

[

Vqk

〈

c†q(t)ck(t)
〉

− V ∗qk

〈

c†k(t)cq(t)
〉]

=
2e

~
Re





∑

kq

VqkG
<
kq(t, t)



 . (6.230)

In addition to the lesser the other (greater) function is used

G>
αβ(t1, t2) = −i

〈

cα(t1)c†β(t2)
〉

. (6.231)

For bosons lesser and greater functions are defined as

G̃<
αβ(t1, t2) = −i

〈

a†β(t2)aα(t1)
〉

, (6.232)

G̃>
αβ(t1, t2) = −i

〈

aα(t1)a†β(t2)
〉

. (6.233)

The name ”lesser” originates from the time-ordered Green function, the main function in equilibrium

theory, which can be calculated by diagrammatic technique

Gαβ(t1, t2) = −i
〈

T
(

cα(t1)c†β(t2)
)〉

, (6.234)

Gαβ(t1, t2) =











−i
〈

cα(t1)c†β(t2)
〉

if t1 > t2 ⇒ Gαβ ≡ G>
αβ ,

i
〈

c†β(t2)cα(t1)
〉

if t1 < t2 ⇒ Gαβ ≡ G<
αβ ,

(6.235)

here additional sing minus appears for interchanging of fermionic creation-annihilation operators. Lesser

means that t1 < t2.

From the definitions it is clear that the retarded function can be combined from lesser and greater

functions

GR
αβ(t1, t2) = θ(t1 − t2)

[

G>
αβ(t1, t2) −G<

αβ(t1, t2)
]

. (6.236)

Free-particle lesser function for fermions Now let us consider again free fermions. Heisenberg

operators for free fermions are (t0 = 0)

cα(t) = e−iεαtcα(0), c†α(t) = eiεαtc†α(0). (6.237)

Lesser function is

G<
αβ(t1, t2) =i

〈

c†β(t2)cα(t1)
〉

= ieiεβt2−iεαt1
〈

c†βcα

〉

= ie−iεα(t1−t2)f0(εα)δαβ , (6.238)
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one sees that contrary to the retarded function, the lesser function is proportional to the distribution

function, in equilibrium this is Fermi distribution function

f0(ε) =
1

e
ε−µ

T + 1
. (6.239)

It is interesting to compare this answer with the result for nonthermal initial conditions. Assume that

initial state is described by the density matrix ρ0
αβ =

〈

c†βcα

〉

, now with nonzero off-diagonal elements.

Time dependence of the density matrix is given by

ραβ(t) = ei(εβ−εα)tρ0
αβ . (6.240)

We obtain the well known result that off-diagonal elements oscillate in time.

Now define Fourier-transform for lesser function (τ = t1 − t2)

G<(ε) =

∫ ∞

−∞

G<(τ)ei[ε+i0sign(τ)]τdτ, (6.241)

note that here we use Fourie-transform with complicated term i0sign(τ), which makes this transformation

consistent with previously introduced transformations (6.217) for retarded (τ > 0) and (6.220) advanced

(τ < 0) functions.

Applying this transformation to (6.238) we obtain

G<
αβ(ε) =if0(εα)δαβ

∫ ∞

−∞

e+i[ε−εα+i0sign(τ)]τdτ

= 2πif0(εα)δ(ε− εα)δαβ . (6.242)

For free fermion greater function one obtaines

G>
αβ(t1, t2) = −ie−iεα(t1−t2)(1 − f0(εα))δαβ , (6.243)

G>
αβ(ε) = −2πi(1 − f0(εα))δ(ε− εα)δαβ . (6.244)

Equilibrium case. Fluctuation-dissipation theorem Now we want to consider some general prop-

erties of interacting systems. In equilibrium the lesser function is not independent and is simply related

to the spectral function by the relation

G<
αβ(ε) = iAαβ(ε)f0(ε). (6.245)

This relation is important because establish equilibrium initial condition for nonequilibrium lesser func-

tion, and propose useful Ansatz if equilibrium distribution function f 0(ε) is replaced by some unknown

nonequilibrium function.

Here we prove this relation using Lehmann representation – quite useful method in the theory of
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Green functions. The idea of the method is to use exact many-particle eigenstates |n〉, even if they are

not explicitly known.

Consider first the greater function. Using states |n〉 we represent this function as

G>
αβ(t1, t2) = −i

〈

cα(t1)c†β(t2)
〉

= − i

Z

∑

n

〈

n
∣

∣

∣e−Ĥ/T cα(t1)c†β(t2)
∣

∣

∣n
〉

=

= − i

Z

∑

nm

e−En/T 〈n|cα|m〉〈m|c†β |n〉ei(En−Em)(t1−t2). (6.246)

In Fourie representation

G>
αβ(ε) = −2πi

Z

∑

nm

e−En/T 〈n|cα|m〉〈m|c†β |n〉δ(En − Em + ε). (6.247)

Similarly, for the lesser function we find

G<
αβ(ε) =

2πi

Z

∑

nm

e−Em/T 〈n|c†β |m〉〈m|cα|n〉δ(Em − En + ε). (6.248)

Now we can use these expressions to obtain some general properties of Green functions without explicit

calculation of the matrix elements. Exchanging indices n and m in the expression (6.248) and taking into

account that Em = En − ε because of delta-function, we see that

G>
αβ(ε) = −e−ε/TG<

αβ(ε). (6.249)

From this expression and relation (6.236), which can be written as

Aαβ(ε) = i
[

G>
αβ(ε) −G<

αβ(ε)
]

(6.250)

we derive (6.245).

6.3.2.3 Interaction representation

In the previous lectures we found that nonequilibrium Green functions can be quite easy calculated for free

particles, and equations of motion for one-particle Green functions (the functions which are the averages

of two creation-annihilation operators) can be formulated if we add interactions and time-dependent

perturbations, but these equations include high-order Green functions (the averages of three, four, and

larger number of operators). The equations can be truncated and formulated in terms of one-particle

Green functions in some simple approximations. However, systematic approach is needed to proceed with

perturbation expansion and self-consistent methods (all together is known as diagrammatic approach).

The main idea of the diagrammatic approach is to start from some ”simple” Hamiltonian (usually for

free particles) and, treating interactions and external fields as a perturbation, formulate perturbation

expansion, and summarize all most important terms (diagrams) in all orders of perturbation theory. The
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result of such procedure gives, in principle, nonperturbative description (ordinary mean-field theory is the

simplest example). The starting point of the method is so-called interaction representation.

Let us consider the full Hamiltonian Ĥ as the sum of a free-particle time-independent part Ĥ0 and

(possibly time-dependent) perturbation V̂ (t) (note that this ”perturbation” should not be necessarily

small)

Ĥ = Ĥ0 + V̂ (t). (6.251)

We define new operators in interaction representation by

f̂ I(t) = eiĤ0tf̂Se−iĤ0t, (6.252)

where f̂S is the time-independent Schrödinger operator. This is equivalent to the time-dependent Heisen-

berg operator, defined by the part Ĥ0 of the Hamiltonian. For a free-particle Hamiltonian Ĥ0 the oper-

ators f̂ I(t) can be calculated exactly.

A new wave function corresponding to (6.252) is

ΨI(t) = eiĤ0tΨS(t). (6.253)

It is easy to see that transformation (6.252), (6.253) is unitary transformation and conserves the average

value of any operator

〈ΨS |f̂S |ΨS〉 = 〈ΨI |f̂ I |ΨI〉. (6.254)

Substituting (6.253) into the ordinary Schrödinger equation, we derive the equation

i
∂ΨI

∂t
= V̂ I(t)ΨI , (6.255)

where V̂ I(t) = eiĤ0tV̂ S(t)e−iĤ0t is in the intreraction representation.

Equation (6.255) seems to be quite simple, however the operator nature of V̂ makes this problem

nontrivial. Indeed, consider a small time-step ∆t. Then

Ψ(t+ ∆t) =
[

1 − iV̂ S(t)∆t
]

Ψ(t) = exp−iV̂ S(t)∆t Ψ(t), (6.256)

linear in ∆t term can be transformed into the exponent if we understand the exponential function of the

operator in the usual way

expÂ = 1 + Â+
1

2!
Â2 + ...+

1

n!
Ân + ..., (6.257)

and assume that only linear term should be taken at ∆t→ 0.

If we now repeat this procedure at times ti with step ∆t, we obtain finally

ΨI(t) = Ŝ(t, t0)ΨI(t0), (6.258)
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with

Ŝ(t, t0) =

t
∏

ti=t0

exp
(

−iV̂ I(ti)∆t
)

, (6.259)

this product, however, is not simply exp

(

−i
∫ t

t0

V̂ I(t′)dt′
)

in the limit ∆t→ 0, because operators V̂ I(t′)

are not commutative at different times, and for two noncommutative operators Â and B̂ eÂ+B̂ 6= eÂeB̂ .

In the product (6.259) operators at earlier times should be applied first, before operators at later

times. In the limit ∆t→ 0 we obtain

Ŝ(t, t0) = T exp

(

−i
∫ t

t0

V̂ I(t′)dt′
)

, (6.260)

where T is the time-ordering operator (”-” for fermionic operators)

T
(

Â(t1)B̂(t2)
)

=











Â(t1)B̂(t2) if t1 > t2,

±B̂(t2)Â(t1) if t1 < t2.

(6.261)

Of cause, expression (6.260) is defined only in the sense of expansion (6.257). Consider for example

the second-order term in the time-ordered expansion.

T

[∫ t

t0

V̂ I(t′)dt′
]2

= T

[∫ t

t0

V̂ I(t′)dt′
∫ t

t0

V̂ I(t′′)dt′′
]

=

=

∫ t

t0

dt′
∫ t′

t0

dt′′V̂ I(t′)V̂ I(t′′) +

∫ t

t0

dt′′
∫ t′′

t0

dt′V̂ I(t′′)V̂ I(t′). (6.262)

If we exchange t′ and t′′ in the second integral, we see finally that

T

[∫ t

t0

V̂ I(t′)dt′
]2

= 2

∫ t

t0

dt′
∫ t′

t0

dt′′V̂ I(t′)V̂ I(t′′). (6.263)

Properties of Ŝ(t, t0) Ŝ is the unitary operator and

Ŝ−1(t, t0) = Ŝ†(t, t0) = T̃ exp

(

i

∫ t

t0

V̂ I(t′)dt′
)

, (6.264)

where T̃ is time-anti-ordering operator. Some other important properties are

Ŝ−1(t, t0) = Ŝ(t0, t), (6.265)

Ŝ(t3, t2)Ŝ(t2, t1) = Ŝ(t3, t1), (6.266)

Ŝ−1(t2, t1)Ŝ−1(t3, t2) = Ŝ−1(t3, t1). (6.267)

Finally, we need the expression of a Heisenberg operator, defined by the full Hamiltonian Ĥ = Ĥ0 + V̂ (t),
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through an operator in the interaction representation. The transformation, corresponding to (6.258), is

given by

f̂H(t) = e−iĤ0t0 Ŝ−1(t, t0)f̂ I(t)Ŝ(t, t0)eiĤ0t0 , (6.268)

and the state ΨI(t0) is related to the Heisenberg time-independent wave function by

ΨI(t0) ≡ eiĤ0t0ΨS(t0) = eiĤ0t0ΨH , (6.269)

in accordance with our previous discussion of averaging we assume that at time t = t0 Heisenberg opera-

tors coincide with time-independent Schrödinger operators f̂H(t0) = f̂S , and Schrödinger wave function

coincides at the same time with Heisenberg time-independent wave function ΨS(t0) = ΨH . To avoid these

additional exponents in (6.268) we can redefine the transformation to the interaction representation as

f̂ I(t) = eiĤ0(t−t0)f̂Se−iĤ0(t−t0), (6.270)

in accordance with the transformation (6.206) for time-independent Hamiltonian. Previously we showed

that free-particle Green functions are not dependent on t0 for equilibrium initial condition, if we want

to consider some nontrivial initial conditions, it is easier to formulate these conditions directly for Green

functions. Thus below we shall use relations

f̂H(t) = Ŝ−1(t, t0)f̂ I(t)Ŝ(t, t0), (6.271)

and

ΨI(t0) ≡ ΨS(t0) = ΨH . (6.272)

Green functions in the interaction representation Consider, for example, the lesser function

G<
αβ(t1, t2) = i

〈

c†β(t2)cα(t1)
〉

= i
〈

ΨH
∣

∣

∣c
†
β(t2)cα(t1)

∣

∣

∣ΨH
〉

, (6.273)

c-operators here are Heisenberg operators and they should be replaced by operators cI(t) ≡ c̃(t) in the

interaction representation:

G<
αβ(t1, t2) = i

〈

ΨH
∣

∣

∣Ŝ−1(t2, t0)c̃†β(t2)Ŝ(t2, t0)Ŝ−1(t1, t0)c̃α(t1)Ŝ(t1, t0)
∣

∣

∣ΨH
〉

. (6.274)

Using properties of Ŝ operators, we rewrite this expression as

G<
αβ(t1, t2) = i

〈

Ŝ(t0, t2)c̃†β(t2)Ŝ(t2, t1)c̃α(t1)Ŝ(t1, t0)
〉

. (6.275)
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6.3.2.4 Schwinger-Keldysh time contour and contour functions

Closed time-path integration Now let us introduce one useful trick, so-called closed time-path con-

tour of integration. First, note that the expression of the type

f̂H(t) = Ŝ−1(t, t0)f̂ I(t)Ŝ(t, t0)

= T̃ e
i
∫

t
t0

V̂ I(t′)dt′
f̂ I(t)Te

−i
∫

t
t0

V̂ I(t′)dt′
, (6.276)

can be written as

f̂H(t) = TCt
exp

(

−i
∫

Ct

V̂ I(t′)dt′
)

f̂ I(t), (6.277)

where the integral is taken along closed time contour from t0 to t and then back from t to t0

∫

Ct

dt′ =

∫ t

t0

dt′ +

∫ t0

t

dt′, (6.278)

contour time-ordering operator TCt
works along the contour Ct, it means that for times t→ it is usual

time-ordering operator T , and for times t← it is anti-time-ordering operator T̃ . Symbolically

TCt

∫

Ct

dt′ = T

∫

→

dt′ + T̃

∫

←

dt′. (6.279)

Consider now the application of this closed time-path contour to calculation of Green functions. It is

convenient to start from the time-ordered function at t2 > t1

〈

T
(

B̂(t2)Â(t1)
)〉

=
〈

Ŝ(t0, t2)B̃(t2)Ŝ(t2, t1)Ã(t1)Ŝ(t1, t0)
〉

, (6.280)

here Â(t) and B̂(t) are Heisenberg operators, Ã(t) and B̃(t) are operators in the interaction representation,

in the case of fermionic operators the additional minus should be added for any permutation of two

operators.

Using the properties of the Ŝ-operator, we transform this expression as

〈

Ŝ(t0, t2)B̃(t2)Ŝ(t2, t1)Ã(t1)Ŝ(t1, t0)
〉

=
〈

Ŝ−1(t2, t0)B̃(t2)Ŝ(t2, t1)Ã(t1)Ŝ(t1, t0)
〉

=

=
〈

Ŝ−1(∞, t0)Ŝ(∞, t2)B̃(t2)Ŝ(t2, t1)Ã(t1)Ŝ(t1, t0)
〉

=
〈

Ŝ−1T
(

B̃(t2)Ã(t1)Ŝ
)〉

, (6.281)

where we defined operator

Ŝ = Ŝ(∞, t0). (6.282)

Using contour integration, it can be written as

〈

T
(

B̂(t2)Â(t1)
)〉

=
〈

TC

(

ŜCB̃(t→2 )Ã(t→1 )
)〉

, (6.283)
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ŜC = TC exp

(

−i
∫

C

V̂ I(t′)dt′
)

, (6.284)

contour C goes from t0 trough t1 and t2, and back to t0. If t2 > t1 it is obvious that contour ordering

along C→ gives the terms from Ŝ(t1, t0) to B̂(t2) in (6.280). The integral over the back path C← gives

TC exp

(

−i
∫

←

V̂ I(t′)dt′
)

= T̃ exp

(

−i
∫ t0

t2

V̂ I(t′)dt′
)

=

= T̃ exp

(

i

∫ t2

t0

V̂ I(t′)dt′
)

= Ŝ−1(t2, t0) = Ŝ(t0, t2). (6.285)

For t2 < t1 the operators in (6.280) are reordered by T -operator and we again obtain (6.283).

The lesser and greater functions are not time-ordered and arguments of the operators are not affected

by time-ordering operator. Nevertheless we can write such functions in the same form (6.283). The trick

is to use one time argument from the forward contour and the other from the backward contour, for

example
〈

B̂(t2)Â(t1)
〉

=
〈

TC

(

ŜCB̃(t←2 )Ã(t→1 )
)〉

, (6.286)

here the time t1 is always before t2.

Contour (contour-ordered) Green function Now we are able to define contour or contour-ordered

Green function – the useful tool of Keldysh diagrammatic technique. The definition is similar to the

previous one

GC
αβ(τ1, τ2) = −i

〈

TC

(

cα(τ1)c†β(τ2)
)〉

, (6.287)

where, however, τ1 and τ2 are contour times. This function includes all nonequilibrium Green functions

introduced before. Indeed, depending on contour position of times we obtain lesser, greater, or time-

ordered functions (below we give different notations used in the literature)

GC
αβ(τ1, τ2) =



















































τ1, τ2 ∈ C→ : −i
〈

Tcα(t1)c†β(t2)
〉

=⇒ G−− or GT (t1, t2),

τ1 ∈ C←, τ2 ∈ C→ : −i
〈

cα(t1)c†β(t2)
〉

=⇒ G+− or G>(t1, t2),

τ1 ∈ C→, τ2 ∈ C← : i
〈

c†β(t2)cα(t1)
〉

=⇒ G−+ or G<(t1, t2),

τ1, τ2 ∈ C← : −i
〈

T̃ cα(t1)c†β(t2)
〉

=⇒ G++ or GT̃ (t1, t2).

(6.288)

These four functions are not independent, from definitions it follows that

G< +G> = GT +GT̃ , (6.289)
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and anti-hermitian relations

GT
αβ(t1, t2) = −GT ∗

βα(t2, t1), (6.290)

G<
αβ(t1, t2) = −G<∗

βα(t2, t1), (6.291)

G>
αβ(t1, t2) = −G>∗

βα(t2, t1). (6.292)

It is more convenient to use retarded and advanced functions instead of time-ordered functions. There

is a number of ways to express GR and GA through above defined functions

GR = θ(t1 − t2)
[

G> −G<
]

= GT −G< = G> −GT̃ , (6.293)

GA = θ(t2 − t1)
[

G< −G>
]

= GT −G> = G< −GT̃ . (6.294)

Contour Green function in the interaction representation In the interaction representation one

should repeat the calculations performed before and given the expressions (6.275), (6.280), and then

replace usual times by contour times τ , so we obtain

〈

TC

(

cα(τ1)c†β(τ2)
)〉

=
〈

TC

(

Ŝ(τ0, τ2)c̃†β(τ2)Ŝ(τ2, τ1)c̃α(τ1)Ŝ(τ1, τ0)
)〉

. (6.295)

Using contour integration, it can be written as

GC
αβ(τ1, τ2) = −i

〈

TC

(

cα(τ1)c†β(τ2)
)〉

= −i
〈

TC

(

ŜC c̃α(τ1)c̃†β(τ2)
)〉

, (6.296)

ŜC = TC exp

(

−i
∫

C

V̂ I(t′)dt′
)

, (6.297)

6.3.3 Current through a nanosystem: Meir-Wingreen-Jauho formula

Now we consider the central point of the NGF transport theory through nanosystems - the Meir-Wingreen-

Jauho current formula [106, 107, 53]. This important expression shows that the current can be calculated,

if the spectral and kinetic Green functions of the central system are known, and it is exact in the case

of noninteracting leads. The details of the derivation can be found in the above cited papers, so we only

briefly outline it.

(i) Derivation by the NGF method In the absence of interactions in the leads (besides the tunneling)

one can derive the following exact expression for the lead-system function:

G<
α,ikσ(ε) =

∑

β

V ∗ikσ,β

[

GR
αβ(ε)g<

ikσ(ε) +G<
αβ(ε)gA

ikσ(ε)
]

, (6.298)
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where g<
ikσ(ε) and gA

ikσ(ε) are Green functions of isolated leads, Substituting it into (6.198), we obtain for

the current

Ji(t) =
2e

~

∫

dε

2π
Re





∑

kσ,αβ

Vikσ,αV
∗
ikσ,β

[

GR
αβ(ε)g<

ikσ(ε) +G<
αβ(ε)gA

ikσ(ε)
]



 . (6.299)

For equilibrium right or left lead Green functions we obtain directly

g<
kσ(t1 − t2) = i

〈

c†kσ(t2)ckσ(t1)
〉

= if0
σ(εkσ)e−i(εkσ+eϕ)(t1−t2), (6.300)

gR
kσ(t1 − t2) = −iθ(t1 − t2)

〈

[

ckσ(t1), c†kσ(t2)
]

+

〉

= −iθ(t1 − t2)e−i(εkσ+eϕ)(t1−t2), (6.301)

gA
kσ(t1 − t2) = iθ(t2 − t1)

〈

[

ckσ(t1), c†kσ(t2)
]

+

〉

= iθ(t2 − t1)e−i(εkσ+eϕ)(t1−t2), (6.302)

or after the Fourier transform

g<
kσ(ε) =

∫

g<
kσ(t1 − t2)eiε(t1−t2)d(t1 − t2) = 2πif0

σ(εkσ)δ(ε− εkσ − eϕ), (6.303)

g>
kσ(ε) = −2πi[1 − f0

σ(εkσ)]δ(ε− εkσ − eϕ), (6.304)

gR
kσ(ε) =

1

ε− εkσ − eϕ+ i0
, (6.305)

gA
kσ(ε) =

1

ε− εkσ − eϕ− i0
, (6.306)

f0
σ(ε) =

1

exp
(

ε−µσ

T

)

+ 1
. (6.307)

Using the level-width function (below without spin polarization of the leads)

Γi=L(R)(ε) ≡ Γiαβ(ε) = 2π
∑

kσ

Vikσ,βV
∗
ikσ,αδ(ε− εikσ) = 2π

∑

σ

ρiσ(ε)Viσ,β(ε)V ∗iσ,α(ε), (6.308)

and changing the momentum summation to the energy integration
∑

k

⇒
∫

ρ(εk)dεk, we obtain the

following expression for the current

Ji=L,R =
ie

~

∫

dε

2π
Tr
{

Γi(ε− eϕi)
(

G<(ε) + f0
i (ε− eϕi)

[

GR(ε) − GA(ε)
])}

, (6.309)

where f0
i is the equilibrium Fermi distribution function with chemical potential µi. Thus, we obtain the

well-known Meir-Wingreen formula. Note, that we use explicitly the electrical potential of the leads in

this expression. It is important to mention, that at finite voltage the arguments of the left and right

level-width functions are changed in a different way, which means, in particular, that the known condition

of proportional coupling ΓL = λΓR can be fulfilled only in the wide-band limit, when both functions are

energy independent.
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(ii) Different forms of the MWJ formula In a stationary state JR = −JL = J and one can use

the symmetric form

J =
ie

2~

∫

dε

2π
Tr
{[

ΓL(ε− eϕL) − ΓR(ε− eϕR)
]

G<(ε)+

+
[

ΓL(ε− eϕL)f0
L(ε− eϕL) − ΓR(ε− eϕR)f0

R(ε− eϕR)
] [

GR(ε) − GA(ε)
]}

.

(6.310)

For the proportional coupling ΓL(ε) = λΓR(ε) in linear response (ϕi dependence of Γi is ignored!)

J =
2e

~

∫

dε

4π

[

f0
L(ε− eϕL) − f0

R(ε− eϕR)
]

Tr

(

ΓL(ε)ΓR(ε)

ΓL(ε) + ΓR(ε)
A(ε)

)

. (6.311)

A = i(GR − GA) is the spectral function. This expression is valid for nonlinear response if the energy

dependence of Γ can be neglected (wide band limit).

(iii) Noninteracting case Finally, in the noninteracting case it is possible to obtain the usual Landauer-

Büttikier formula with the transmission function

T (ε) = Tr
[

ΓL(ε− eϕL)GR(ε)ΓR(ε− eϕR)GA(ε)
]

. (6.312)

This expression is equivalent to the one derived earlier by the single-particle Green function method.

We should stress once more that this formula is valid for finite voltage. Therefore, the voltage

dependence of the level-width functions is important.

6.3.4 Nonequilibrium equation of motion method

Now we start to consider the case of interacting nanosystems. Although the MWJ current formula is

exact, the problem to find the Green functions of the central region is sometimes highly nontrivial. At

the present time there are several techniques developed to solve this problem.

Nonequilibrium equation of motion (NEOM) method is the simplest approximate approach. In spite

of its simplicity, it is very useful in many cases, and is very convenient for numerical implementation. In

this section we consider only a general formulation, some particular examples are considered further.

We start from the general definition of a Green function as the average of two Heisenberg operators

Â(t) and B̂(t), denoted as
〈〈

Â(t1), B̂(t2)
〉〉R,A,<

.

The particular definitions of the averages for spectral and kinetic functions are

〈〈

Â(t1), B̂(t2)
〉〉R

= −iθ(t1 − t2)
〈[

Â(t1), B̂(t2)
]

∓

〉

, (6.313)



6.3. Nonequilibrium Green function theory of transport 201

where upper sing here and below is for boson functions, lower sing for fermions,

〈〈

Â(t1), B̂(t2)
〉〉<

= −i
〈

Â(t1), B̂(t2)
〉

. (6.314)

The equations of motion for NGF are obtained from the Heisenberg equation of motion for operators

i
∂Â

∂t
=
[

Â, Ĥ
]

−
= ÂĤ − ĤÂ, (6.315)

for any Heisenberg operator Â(t). Here and below all Hamiltonians are time-independent. We consider

the stationary problem.

(iv) Spectral (retarded and advanced) functions Let us start from a retarded function

〈〈

Â(t1), B̂(t2)
〉〉R

= −iθ(t1 − t2)
〈[

Â(t1), B̂(t2)
]

∓

〉

. (6.316)

Taking the time derivative we obtain

i
∂

∂t1

〈〈

Â(t1), B̂(t2)
〉〉R

= δ(t1 − t2)
〈[

Â(t1), B̂(t1)
]

∓

〉

+
〈〈[

Â(t1), Ĥ
]

−
, B̂(t2)

〉〉R

, (6.317)

where the first term originates from the time-derivative of the θ-function, and the equation (6.315) is

used in the second term.

In the stationary case the Fourier transform can be used

(ε+ iη)
〈〈

Â, B̂
〉〉R

ε
=
〈[

Â, B̂
]

∓

〉

+
〈〈[

Â, Ĥ
]

−
, B̂
〉〉R

ε
. (6.318)

Now let us assume that the Hamiltonian can be divided into ”free particle” and ”interaction” parts

Ĥ = Ĥ0 + Ĥ1, and [Â, Ĥ0]− = ε̂0Â. (The simple example. For the free particle Hamiltonian Ĥ0 =
∑

β εβd
†
βdβ and the operator Â = d†α one has [Â, Ĥ0]− =

∑

β εβ [d†α, d
†
βdβ ]− = εαd

†
α, ε̂0 = εα is simply a

number. In general, ε̂0 is some time-independent operator). So that

(ε+ iη − ε̂0)
〈〈

Â, B̂
〉〉R

ε
=
〈[

Â, B̂
]

∓

〉

+
〈〈[

Â, Ĥ1

]

−
, B̂
〉〉R

ε
, (6.319)

the second term includes interaction and can not be easy simplified.

It is convenient now to introduce the ”free particle” function ĝR
ε as a solution of the equation

(ε+ iη − ε̂0)ĝR
ε = 1. (6.320)

Now we multiply the right and left parts of (6.319) by ĝR
ε . Using the function ĝR(t) =

∫

ĝR
ε e
−iεt dε

2π



202 Green function techniques in the treatement of transport at the molecular scale

we can write the time-dependent solution of (6.317) as

〈〈

Â(t1), B̂(t2)
〉〉R

=ĝR(t1 − t2)
〈[

Â(t1), B̂(t1)
]

∓

〉

+

∫

ĝR(t1 − t′)
〈〈[

Â(t′), Ĥ1

]

−
, B̂(t2)

〉〉R

dt′. (6.321)

(v) EOM on the Schwinger-Keldysh contour The calculation of the lesser functions by the EOM

technique requires some care. To demonstrate it let us compare the EOM for retarded and lesser functions

of free particles.

The equation for gR
αβ is (assuming the diagonal matrix ε̃αβ)

(ε+ iη − ε̃α) gR
αβ = δαβ , (6.322)

from which the free-particle Green function is easily obtained.

At the same time for the lesser function we have the equation

(ε− ε̃α) g<
αβ = 0, (6.323)

from which, however, the free-particle lesser function g<
αβ = 2πf0(ε)δ(ε− εα)δαβ can not be obtained.

The problem can be generally resolved by using the EOM on the Schwinger-Keldysh time contour.

Contour-ordered Green function is defined as

〈〈

Â(τ1), B̂(τ2)
〉〉C

= −i
〈

Tc

(

Â(τ1), B̂(τ2)
)〉

, (6.324)

where Â(τ1) and B̂(τ2) are two Heisenberg operators, defined along the contour.

Taking the time derivative we obtain the equation

i
∂

∂τ1

〈〈

Â(τ1), B̂(τ2)
〉〉C

= δc(τ1 − τ2)
〈[

Â(τ1), B̂(τ1)
]

∓

〉

+
〈〈[

Â(τ1), Ĥ
]

−
, B̂(τ2)

〉〉C

, (6.325)

in the stationary case this equation can be formally solved if one applies the Fourier transform along the

contour, or perturbation expansion in the interaction representation (Niu et al. 1999). Using the free

particle solution ĝC(τ1 − τ2) we can write the time-dependent solution as

〈〈

Â(τ1), B̂(τ2)
〉〉C

=ĝC(τ1 − τ2)
〈[

Â(τ1), B̂(τ1)
]

∓

〉

+

∫

ĝC(τ1 − τ ′)
〈〈[

Â(τ ′), Ĥ1

]

−
, B̂(τ2)

〉〉C

dτ ′. (6.326)

(vi) Kinetic (lesser) function Applying now the Langreth theorem, which shows, that from

C(τ1, τ2) =

∫

C

A(τ1, τ3)B(τ3, τ2)dτ3 (6.327)
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it follows

CR(t1, t2) =
∫

AR(t1, t3)BR(t3, t2)dt3, (6.328)

C<(t1, t2) =
∫ (

AR(t1, t3)BR(t3, t2) +A<(t1, t3)BA(t3, t2)
)

dt3, (6.329)

we get (6.321) for the retarded function, and

〈〈

Â(t1), B̂(t2)
〉〉<

= ĝ<(t1 − t2)
〈[

Â(t1), B̂(t1)
]

∓

〉

+

∫

ĝR(t1 − t′)
〈〈[

Â(t′), Ĥ1

]

−
, B̂(t2)

〉〉<

dt′

+

∫

ĝ<(t1 − t′)
〈〈[

Â(t′), Ĥ1

]

−
, B̂(t2)

〉〉A

dt′ (6.330)

for the lesser function. And the Fourier transform is

〈〈

Â, B̂
〉〉<

ε
= ĝ<

ε

〈[

Â, B̂
]

∓

〉

+ ĝR
ε

〈〈[

Â, Ĥ1

]

−
, B̂
〉〉<

ε
+ ĝ<

ε

〈〈[

Â, Ĥ1

]

−
, B̂
〉〉A

ε
. (6.331)

6.3.5 Kadanoff-Baym-Keldysh method

Now we review briefly the other approach. Kadanoff-Baym-Keldysh (KBK) method systematically ex-

tends the equilibrium many-body theory to the nonequilibrium case. Potentially, it is the most powerful

approach. Below we give a simple introduction into the method, which is currently actively developed.

(i) Perturbation expansion and diagrammatic rules for contour functions We found that

Green functions can be written in the interaction representation with a help of the Ŝ-operator. For

example, time-ordered fermionic Green function is

GT
αβ(t1, t2) = − i

〈

T
(

cα(t1)c†β(t2)
)〉

(6.332)

= −i
〈

Ŝ−1T
(

c̃α(t1)c̃†β(t2)Ŝ
)〉

, (6.333)

using ”usual” Ŝ-operator

Ŝ = Ŝ(∞, t0) = T exp

(

−i
∫ ∞

t0

V̂ I(t′)dt′
)

, (6.334)

or

GT
αβ(t1, t2) = −i

〈

TC

(

c̃α(t→1 )c̃†β(t→2 )ŜC

)〉

, (6.335)

using ”contour” ŜC-operator

ŜC = TC exp

(

−i
∫

C

V̂ I(t′)dt′
)

. (6.336)

We first consider the zero temperature case, when one can set t0 = −∞,

Ŝ = Ŝ(∞,−∞) = T exp

(

−i
∫ ∞

−∞

V̂ I(t′)dt′
)

, (6.337)

and assume that interaction is switched on and switched off at t → +∞ adiabatically. This condition
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is necessary to prevent excitation of the system from its ground state. The other necessary condition is

that the perturbation is time-independent in the Schrödinger representation. In this case if the initial

state |Ψ(t = −∞)〉 = |Ψ0〉 is the ground state (of free particles), then the final state |Ψ(t = +∞)〉 =

Ŝ|Ψ0〉 = eiθ|Ψ0〉 is also the ground state, only the phase can be changed. Now, using the average value

of the Ŝ-operator

〈Ŝ〉 = 〈Ψ0|Ŝ|Ψ0〉 = eiθ〈Ψ0|Ψ0〉 = eiθ, (6.338)

we obtain

Ŝ|Ψ0〉 = 〈Ŝ〉|Ψ0〉, (6.339)

and

〈Ψ0|Ŝ−1 =
〈Ψ0|
〈Ŝ〉

. (6.340)

So that (6.332) can be written as

GT
αβ(t1, t2) = −i

〈

T
(

c̃α(t1)c̃†β(t2)Ŝ
)〉

〈Ŝ〉
. (6.341)

Now we can expand the exponent (note that S-operator is defined only in the sense of this expansion)

Ŝ =T exp

(

−i
∫ ∞

−∞

V̂ I(t′)dt′
)

= T

∞
∑

n=0

(−i)n

n!

∫ ∞

−∞

dt′1...

∫ ∞

−∞

dt′n V̂ I(t′1)...V̂ I(t′n), (6.342)

and numerator and denominator of the expression (6.341) are

〈

T
(

c̃α(t1)c̃†β(t2)Ŝ
)〉

=

∞
∑

n=0

(−i)n

n!

∫ ∞

−∞

dt′1...

∫ ∞

−∞

dt′n

〈

T c̃α(t1)c̃†β(t2)V̂ I(t′1)...V̂ I(t′n)
〉

, (6.343)

〈Ŝ〉 =

∞
∑

n=0

(−i)n

n!

∫ ∞

−∞

dt′1...

∫ ∞

−∞

dt′n

〈

T V̂ I(t′1)...V̂ I(t′n)
〉

. (6.344)

These expressions are used to produce the perturbation series.

The main quantity to be calculated is the contour Green function

G(1, 2) ≡ GC
αβ(τ1, τ2) = −i

〈

TC

(

cα(τ1)c†β(τ2)
)〉

, (6.345)

where τ1 and τ2 are contour times. Here 1c ≡ α, τ1.

The general diagrammatic rules for contour Green functions are exactly the same as in the usual zero-

temperature technique (we call it standard rules). The correspondence between diagrams and analytical

expressions is established in the following way.

1. Open bare electron line is iG0(1, 2).

2. Closed bare electron line is n0(1) ≡ n
(0)
α (τ1).
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3. Bare interaction line is −iv(1, 2).

4. Self-energy is −iΣ(1, 2).

5. Integration over internal vertices, and other standard rules.

(ii) Langreth rules Although the basic equations and diagrammatic rules are formulated for con-

tour Green functions, the solution of these equation and final results are much more transparent when

represented by real-time spectral and kinetic functions.

As in the ordinary diagrammatic technique, the important role is played by the integration (summa-

tion) over space and contour-time arguments of Green functions, which is denoted as

∫

d1c ≡
∑

α

∫

C

dτ1. (6.346)

After application of the Langreth rules, for real-time functions these integrals become

∫

d1 ≡
∑

α

∫ ∞

−∞

dt1. (6.347)

The Langreth rules show, for example, that from

C(τ1, τ2) =

∫

C

A(τ1, τ3)B(τ3, τ2)dτ3 (6.348)

it follows

CR(t1, t2) =
∫

AR(t1, t3)BR(t3, t2)dt3, (6.349)

C<(t1, t2) =
∫ (

AR(t1, t3)B<(t3, t2) +A<(t1, t3)BA(t3, t2)
)

dt3. (6.350)

The other important rules are: from

C(τ1, τ2) = A(τ1, τ2)B(τ1, τ2) (6.351)

it follows

CR(t1, t2) = AR(t1, t2)BR(t1, t2) +AR(t1, t2)B<(t1, t2) +A<(t1, t2)BR(t1, t2), (6.352)

C<(t1, t2) = A<(t1, t2)B<(t1, t2), (6.353)

and from

C(τ1, τ2) = A(τ1, τ2)B(τ2, τ1) (6.354)
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1Σ = +
Figure 6.15: Diagrammatic representation of the first-order self-energy.

it follows

CR(t1, t2) = AR(t1, t2)B<(t2, t1) +A<(t1, t2)BA(t2, t1), (6.355)

C<(t1, t2) = A<(t1, t2)B>(t2, t1). (6.356)

(ii) First-order self-energy and polarization operator Consider, as an example, the first order

expression for the self-energy, shown in Fig. 6.15. Following the diagrammatic rules, we find

Σ1(1, 2) = δ(1 − 2)

∫

v(1, 3)n0(3)d3 + iv(1, 2)G0(1, 2), (6.357)

where the first term is the Hartree contribution, which can be included into the unperturbed Green

function G0(1, 2). This expression is actually symbolic, and translation from contour (Keldysh-time) to

real-time functions is necessary. Using the Langreth rules, one obtains

ΣR
1 (1, 2) = δ(1+ − 2)

∫

vR(1, 3)n0(3, 3)d3 + ivR(1, 2)GR
0 (1, 2)

+ iv<(1, 2)GR
0 (1, 2) + ivR(1, 2)G<

0 (1, 2), (6.358)

Σ<
1 (1, 2) = iv<(1, 2)G<

0 (1, 2). (6.359)

There is no Hartree term for lesser function, because the times τ1 and τ2 are always at the different

branches of the Keldysh contour, and the δ-function δ(τ1 − τ2) is zero.

In the stationary case and using explicit matrix indices, we have, finally (τ = t1 − t2!, not to mix with

the Keldysh time)

Σ
R(1)
αβ (τ) = δ(τ+)δαβ

∑

γ ṽ
R
αγ(0)n

(0)
γ + ivR

αβ(τ)G
R(0)
αβ τ)

+iv<
αβ(τ)G

R(0)
αβ (τ) + ivR

αβ(τ)G
<(0)
αβ (τ), (6.360)

Σ
<(1)
αβ (τ) = iv<

αβ(τ)G
<(0)
αβ (τ), (6.361)

and we define the Fourier transform of the bare interaction

ṽR
αγ(0) =

∫

vR
αγ(τ)dτ. (6.362)
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1Π =
Figure 6.16: Diagrammatic representation of the first-order polarization operator.

Finally, the Fourier transforms are

Σ
R(1)
αβ (ε) =δαβ

∑

γ

ṽR
αγ(0)n(0)

γ

+ i

∫

dε′

2π

[

vR
αβ(ε′)G

R(0)
αβ (ε− ε′) + v<

αβ(ε′)G
R(0)
αβ (ε− ε′) + vR

αβ(ε′)G
<(0)
αβ (ε− ε′)

]

, (6.363)

Σ
<(1)
αβ (ε) = i

∫

dε′

2π
v<

αβ(ε′)G
<(0)
αβ (ε− ε′). (6.364)

The second important function is the polarization operator (”self-energy for interaction”), showing in

Fig. 6.16. Following the diagrammatic rules, we find

Π1(1, 2) = −iG0(1, 2)G0(2, 1), (6.365)

note the order of times in this expression.

Using the Langreth rules,

ΠR
1 (1, 2) = iGR

0 (1, 2)G<
0 (2, 1) + iG<

0 (1, 2)GA
0 (2, 1), (6.366)

Π<
1 (1, 2) = iG<

0 (1, 2)G>
0 (2, 1). (6.367)

And in the stationary case, restoring the matrix indices

Π
R(1)
αβ (ε) = −i

[

G
R(0)
αβ (τ)G

<(0)
βα (−τ) +G

<(0)
αβ (τ)G

A(0)
βα (−τ)

]

, (6.368)

Π
<(1)
αβ (ε) = −iG<(0)

αβ (τ)G
>(0)
βα (−τ). (6.369)

In the Fourier representation

Π
R(1)
αβ (τ) = −i

∫

dε′

2π

[

G
R(0)
αβ (ε′)G

<(0)
βα (ε′ − ε) +G

<(0)
αβ (ε′)G

A(0)
βα (ε′ − ε)

]

, (6.370)

Π
<(1)
αβ (τ) = −i

∫

dε′

2π
G

<(0)
αβ (ε′)G

>(0)
βα (ε′ − ε). (6.371)

These expressions are quite general and can be used for both electron-electron and electron-vibron

interaction.
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Σ+=
Π+=

G G

W

0G

Wυ

0G

υ

Figure 6.17: Diagrammatic representation of the Dyson equations.

Σ = ++L,R

Figure 6.18: Diagrammatic representation of the full self-energy.

For Coulomb interaction the bare interaction is is v(1, 2) ≡ Uαβδ(τ
+
1 − τ2), so that

vR(1, 2) ≡ Uαβδ(t
+
1 − t2), (6.372)

v<(1, 2) = 0. (6.373)

(iv) Self-consistent equations The diagrams can be partially summed in all orders of perturbation

theory. The resulting equations are known as Dyson equations for the dressed Green function G(1, 2)

and the effective interaction W (1, 2) (Fig. 6.17). Analytically these equations are written as

G(1, 2) = G0(1, 2) +

∫ ∫

G0(1, 3)Σ(3, 4)G(4, 2)d3d4, (6.374)

W (1, 2) = v(1, 2) +

∫ ∫

v(1, 3)Π(3, 4)W (4, 2)d3d4. (6.375)

In the perturbative approach the first order (or higher order) expressions for the self-energy and the

polarization operator are used. The other possibility is to summarize further the diagrams and obtain

the self-consistent approximations (Figs. 6.18,6.19), which include, however, a new unknown function,

Π =
Figure 6.19: Diagrammatic representation of the full polarization operator.
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= + + ...
Figure 6.20: Diagrammatic representation of the vertex function.

called vertex function. We shall write these expressions analytically, including the Hartree-Fock part into

unperturbed Green function G0(1, 2).

Σ′(1, 2) = i

∫ ∫

W (1, 3)G(1, 4)Γ(3; 4, 2)d3d4, (6.376)

Π(1, 2) = −i
∫ ∫

G(1, 3)G(4, 1)Γ(2; 3, 4)d3d4. (6.377)

The equation for the vertex function can not be closed diagrammatically (Fig. 6.20). Nevertheless,

it is possible to write close set of equations (Hedin’s equations), which are exact equations for full Green

functions written through a functional derivative. Hedin’s equations are equations (6.374)-(6.377) and

the equation for the vertex function

Γ(1; 2, 3) = δ(1, 2)δ(1, 3) +

∫ ∫ ∫ ∫

G(4, 6)G(7, 5)Γ(1; 6, 7)
δΣ(2, 3)

δG(4, 5)
d4d5d6d7. (6.378)
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6.4 Applications

6.4.1 Coulomb blockade and non-equilibrium Green functions

In Section II we have seen that Coulomb blockade phenomena mediated by electron-electron interactions

on a quantum dot can be dealt with in a straightforward way by using master equation (ME) approaches,

which are based on Fermi’s Golden Rule. [64, 65, 66, 67, 108, 110, 109, 111] However, due to its intrinsic

perturbative character in the lead-dot coupling, ME techniques cannot cover the whole interaction range

from weak-coupling (Coulomb blockade), intermediate coupling (Kondo physics), up to strong coupling

(Fabry-Perot physics). It is thus of methodological and practical interest to develop schemes which allow,

in a systematic way, to describe the three mentioned regimes also in out-of-equilibrium situations. As

stated in the introduction, we believe that Green function techniques are such a tool; in this section we

will show how a non-equilibrium treatment of the Hubbard-Anderson model together with appropriate

approximations allow us to reproduce the well-known Coulomb blockade stability diagrams obtained with

the master equation approach (see also Section II). For the sake of simplicity we will deal with the problem

of single and double-site dots in the CB regime, although the method can be straightforwardly extended

to multi-level systems. Our purpose is to study the problem of a two site donor/acceptor molecule in

the CB regime within the NEGF as a first step to deal with the phenomenology of a rigid multilevel

island. The nuclear dynamics (vibrations) always present in molecular junctions could be then modularly

included in this theory. Our method can be calibrated on the well-studied double quantum dot problem

[109, 112] and could be possibly integrated in the density functional theory based approaches to molecular

conductance. The Kondo regime would require a separate treatment involving more complex decoupling

schemes and will be thus left out of this review.

The linear conductance properties of a single site junction (SSJ) with Coulomb interactions (Anderson

impurity model), have been extensively studied by means of the EOM approach in the cases related to

CB [113, 114] and the Kondo effect. [115] Later the same method was applied to some two-site models.

[116, 117, 118] Multi-level systems were started to be considered only recently. [119, 120] For out-of-

equilibrium situations (finite applied bias), there are some methodological unclarified issues for calculating

correlation functions using EOM techniques. [121, 122, 123] We have developed an EOM-based method

which allows to deal with the finite-bias case in a self-consistent way. [124]

6.4.1.1 Nonequilibrium EOM formalism

The Anderson-Hubbard Hamiltonian We consider the following model Hamiltonian (which can be

called the multi-level Anderson impurity model, the Hubbard model, or the quantum cluster model)

Ĥ =
∑

αβ

ε̃αβd
†
αdβ +

1

2

∑

αβ

Uαβn̂αn̂β +
∑

ikσ

ε̃ikσc
†
ikσcikσ +

∑

ikσ,α

(

Vikσ,αc
†
ikσdα + h.c.

)

, (6.379)

electrical potentials are included into the energies ε̃ikσ = εikσ + eϕi(t) and ε̃αα = εαα + eϕα(t).

This model is quite universal, describing a variety of correlated electron systems coupled to the leads:
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the Anderson impurity model, the multilevel quantum dot with diagonal noninteracting Hamiltonian

ε̃αβ , a system (cluster) of several quantum dots, when the off-diagonal matrix elements of ε̃αβ describe

hopping between individual dots, and, finally, the 1D and 2D quantum point contacts.

EOM for Heisenberg operators Using the Hamiltonian (6.379) one derives

i
∂cikσ

∂t
=
[

cikσ, Ĥ
]

−
= ε̃ikσcikσ +

∑

α

Vikσ,αdα, (6.380)

i
∂c†ikσ

∂t
= −ε̃ikσc

†
ikσ −

∑

α

V ∗ikσ,αd
†
α, (6.381)

i
∂dα

∂t
=
∑

β

ε̃αβdβ +
∑

β 6=α

Uαβn̂βdα +
∑

ikσ

V ∗ikσ,αcikσ, (6.382)

i
∂d†α
∂t

= −
∑

β

ε̃αβd
†
β −

∑

β 6=α

Uαβn̂βd
†
α −

∑

ikσ

Vikσ,αc
†
ikσ, (6.383)

i
∂n̂α

∂t
=
∑

ikσ

[

−Vikσ,αc
†
ikσdα + V ∗ikσ,αd

†
αcikσ

]

. (6.384)

These equations look like a set of ordinary differential equations, but are, in fact, much more complex.

The first reason is, that there are the equations for operators, and special algebra should be used to solve

it. Secondly, the number of cikσ operators is infinite! Because of that, the above equations are not all

sufficient, but are widely used to obtain the equations for Green functions.

Spectral (retarded and advanced) functions Now we follow the general NEOM method described

in the Section III. Using (6.382), we get the equation for GR
αβ = −i

〈

[

dα, d
†
β

]

+

〉

ε

(ε+ iη)GR
αβ −

∑

γ

ε̃αγG
R
γβ = δαβ +

∑

γ 6=α

UαγG
(2)R
αγ,β + +

∑

ikσ

V ∗ikσ,αG
R
ikσ,β (6.385)

which includes two new functions: G
(2)R
αγ,β and GR

ikσ,β .

The equation for GR
ikσ,β is closed (includes only the function GR

αβ introduced before)

(ε+ iη − ε̃ikσ)GR
ikσ,β =

∑

δ

Vikσ,δG
R
δβ . (6.386)

The equation for

G
(2)R
αγ,β(t1 − t2) = −iθ(t1 − t2)

〈

[

dα(t1)n̂γ(t1), d†β(t2)
]

+

〉
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is more complicated (γ 6= α)

(ε+ iη)G
(2)R
αγ,β−

∑

δ

ε̃αδG
(2)R
δγ,β = 〈n̂γ〉δαβ +i

∫

dε

2π
G<

αβδβγ

+
∑

δ 6=α

Uαδ

〈〈

n̂δdαn̂γ ; d†β

〉〉R

+
∑

ikσ

V ∗ikσ,α

〈〈

cikσnγ ; d†β

〉〉R

+
∑

ikσ

V ∗ikσ,γ

〈〈

dαd
†
γcikσ; d†β

〉〉R

−
∑

ikσ

Vikσ,γ

〈〈

dαc
†
ikσdγ ; d†β

〉〉R

. (6.387)

We also present here one of the next order equations, for the function
〈〈

cikσnγ ; d†β

〉〉R

(ε+ iη − ε̃ikσ)
〈〈

cikσnγ ; d†β

〉〉R

= i

∫

dε

2π
G<

ikσ,βδβγ

+
∑

α

Vikσ,αG
(2)R
αγ,β +

∑

ik′σ′

V ∗ik′σ′,γ

〈〈

cikσd
†
γcik′σ′ ; d†β

〉〉R

−
∑

ik′σ′

Vik′σ′,γ

〈〈

cikσc
†
ik′σ′dγ ; d†β

〉〉R

. (6.388)

The equation (6.388) is not closed again and produces new Green functions of higher order. And

so on. These sequence of equations can not be closed in the general case and should be truncated

at some point. Below we consider some possible approximations. The other important point is, that

average populations and lesser Green functions should be calculated self-consistently. In equilibrium

(linear response) these functions are easy related to the spectral functions. But at finite voltage it should

be calculated independently.

Kinetic (lesser) function Following the same way, as for the retarded functions (using only the

definitions of NGF and Heisenberg equations of motion) one derives instead of (6.385)-(6.388)

εG<
αβ −

∑

γ

ε̃αγG
<
γβ =

∑

γ 6=α

UαγG
(2)<
αγ,β +

∑

ikσ

V ∗ikσ,αG
<
ikσ,β , (6.389)

(ε− ε̃ikσ)G<
ikσ,β =

∑

δ

Vikσ,δG
<
δβ , (6.390)

εG
(2)<
αγ,β −

∑

δ

ε̃αδG
(2)<
δγ,β =

∑

δ 6=α

Uαδ

〈〈

n̂δdαn̂γ ; d†β

〉〉<

+
∑

ikσ

V ∗ikσ,α

〈〈

cikσnγ ; d†β

〉〉<

+
∑

ikσ

V ∗ikσ,γ

〈〈

dαd
†
γcikσ; d†β

〉〉<

−
∑

ikσ

Vikσ,γ

〈〈

dαc
†
ikσdγ ; d†β

〉〉<

, (6.391)

(ε− ε̃ikσ)
〈〈

cikσnγ ; d†β

〉〉<

=
∑

α

Vikσ,αG
(2)<
αγ,β

+
∑

ik′σ′

V ∗ik′σ′,γ

〈〈

cikσd
†
γcik′σ′ ; d†β

〉〉<

−
∑

ik′σ′

Vik′σ′,γ

〈〈

cikσc
†
ik′σ′dγ ; d†β

〉〉<

. (6.392)
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To find G<
ikσ,β and

〈〈

cikσnγ ; d†β

〉〉<

we should divide the right parts by (ε − ε̃ikσ), which is not well

defined at ε = ε̃ikσ. In the section III we considered the general prescription to avoid this problem, we

use the equation (6.331), and instead of (6.390) and (6.392) we obtain

G<
ikσ,β = gR

ikσ

∑

δ

Vikσ,δG
<
δβ + g<

ikσ

∑

δ

Vikσ,δG
A
δβ , (6.393)

〈〈

cikσnγ ; d†β

〉〉<

= gR
ikσ

∑

α

Vikσ,αG
(2)<
αγ,β + g<

ikσ

∑

α

Vikσ,αG
(2)A
αγ,β+

+gR
ikσ

∑

ik′σ′

V ∗ik′σ′,γ

〈〈

cikσd
†
γcik′σ′ ; d†β

〉〉<

− gR
ikσ

∑

ik′σ′

Vik′σ′,γ

〈〈

cikσc
†
ik′σ′dγ ; d†β

〉〉<

+g<
ikσ

∑

ik′σ′

V ∗ik′σ′,γ

〈〈

cikσd
†
γcik′σ′ ; d†β

〉〉A

− g<
ikσ

∑

ik′σ′

Vik′σ′,γ

〈〈

cikσc
†
ik′σ′dγ ; d†β

〉〉A

.

(6.394)

The equations (6.389) and (6.391) can be used without modifications because they include the imaginary

parts (dissipation) from the lead terms.

At this point we stop the general consideration, and introduce a powerful Ansatz for the NEGF which

is related both to the equation-of-motion (EOM) method and to the Dyson equation approach. [124] From

the knowledge of the Green function (GF) we then calculate the transport observables. For clarity, we

first describe our method in the more familiar problem of a single site junction, which is the well-known

Anderson impurity model. Then we apply it to a double quantum dot. The equations obtained below

by the heuristic mapping method can be obtained straightforward from the general NEOM equations

derived in this section using the same approximations as in the mapping method.

6.4.1.2 Anderson impurity model (single site)

The Anderson impurity model is used to describe the Coulomb interaction on a single site:

H = HD +
∑

α

(Hα +HαD),

where

HD =
∑

σ

εσd
†
σdσ +

1

2
Unσnσ̄,

Hα =
∑

k,σ

εαk,σc
†
α,k,σcα,k,σ,

HαD =
∑

k,σ

(

Vα,k,σc
†
α,k,σdσ + V ∗α,k,σd

†
σcα,k,σ

)

,

where d and c are the operators for electrons on the dot and on the left (α = L) and the right (α = R)

lead, U is the Coulomb interaction parameter, εσ is the σ level of the quantum dot, while εαk,σ is the spin

σ level of lead α in k space, σ =↑, ↓. With the help of the EOM and the truncation approximation, we
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can get a closed set of equations for the retarded and advanced GFs G
r/a
σ,τ [114, 53]

(ω − εσ − Σr/a
σ )Gr/a

σ,τ = δσ,τ + UG(2)r/a
σ,τ , (6.395a)

(ω − εσ − U − Σr/a
σ )G(2)r/a

σ,τ = 〈nσ̄〉δσ,τ , (6.395b)

where G
r/a
σ,τ = 〈〈dσ|d†τ 〉〉r/a, G

(2)r/a
σ,τ = 〈〈nσ̄dσ|d†τ 〉〉r/a and

Σr/a
σ (ω) = Σ

r/a
L,σ + Σ

r/a
R,σ =

∑

α,k

|Vα,k,σ|2
ω − εαk,σ ± i0+

(6.396)

are the electron self-energies.

Mapping on retarded Green functions For retarded GFs, from the EOM method, and with the

help of Eqs. (6.395a) and (6.395b), we can get

Gr = Gr
0 +Gr

0UG
(2)r = Gr

0 +Gr
0ΣEOMG(1)r,

where Gr is single-particle GF matrix

Gr =

(

Gr
↑,↑ Gr

↑,↓

Gr
↓,↑ Gr

↓,↓

)

,

and G
(1)r
σ,τ = G

(2)r
σ,τ /〈nσ̄〉. Gr

0 describes the single-particle spectrum without Coulomb interaction, but

including the effects from the electrodes. ΣEOM
σ,τ = U〈nσ̄〉 is the Hartree-like self-energy of our model.

Since there is only Coulomb interaction on the site with the levels εσ, the Fock-like self-energy is vanishing.

Alternatively, by means of the Dyson equation and the second-order truncation approximation, taking

Hartree-like self-energies ΣH
σ,τ = U〈nσ̄〉 (= ΣEOM

σ,τ ), we can also get the retarded GFs as follows

Gr = Gr
0 +Gr

0ΣHGr
1, (6.397)

where Gr
1 = Gr

0 +Gr
0ΣHGr

0 is the first-order truncation GF.

Within the level of the second-order truncation approximation, we see that there is a map between

the EOM results and the Dyson results:

Gr = Gr
0 + Gr

0 ΣH G(1)r (EOM), (6.398a)

l l
Gr = Gr

0 + Gr
0 ΣH Gr

1 (Dyson). (6.398b)

Eqs. (6.398) prompts a way to include further many-particle effects into the Dyson equation, Eq. (6.398b),

by replacing the Dyson-first-order retarded Green function Gr
1 with the EOM G(1)r. Then one obtains

already the correct results to describe CB while keeping the Hartree-like self-energy.
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Mapping on contour and lesser Green functions Introducing now the contour GF Ǧ, we can get

the Dyson equation as follows [50, 51, 52, 53]

Ǧ = Ǧ0 + Ǧ0Σ̌Ǧ, (6.399)

where Σ̌ is the self-energy matrix. [53]

According to the approximation for the retarded GF in Eq. (6.397), we take the second-order trunca-

tion on Eq. (6.399), and then get

Ǧ = Ǧ0 + Ǧ0Σ̌HǦ1,

where Ǧ1 = Ǧ0 +Ǧ0Σ̌HǦ0 is the first-order contour GF, and Ǧ0 has already included the lead broadening

effects.

Similar to the mapping in Eq. (6.398), we perform an Ansatz consisting in substituting the Dyson-

first-order G
r/a/<
1 with the EOM one G(1)r/a/< to consider more many-particle correlations, while the

EOM self-energy is used for the Dyson equation for consistency:

Ǧ = Ǧ0 + Ǧ0 Σ̌H Ǧ1 (Dyson),

l ↑
Ǧ Ǧ(1) (EOM).

(6.400)

Then, using the Langreth theorem [53] we get the lesser GF,

G< = G<
0 +Gr

0ΣH,rG(1)< +G<
0 ΣH,aG(1)a

= G<
0 +Gr

0UG
(2)< +G<

0 UG
(2)a (6.401)

where G
r/a/<
0 are GFs for U = 0, but including the lead broadening effects, i.e.

G<
0 = g<

0 + gr
0Σ<Ga

0 + g<
0 ΣaGa

0 + gr
0ΣrG<

0 ,

G
r/a
0 = g

r/a
0 + g

r/a
0 Σr/aG

r/a
0 ,

with g
r/a/<
0 the free electron GF, and

Σr/a/< =

(

Σ
r/a/<
↑ 0

0 Σ
r/a/<
↓

)

,

Σ<
σ = i

∑

α Γαfα(ω), and Γα = i(Σr
α − Σa

α), fα(ω) = f(ω − µα), f is the equilibrium Fermi function and

µα is the electro-chemical potential in lead α; Σ
r/a
α are the retarded/advanced electron self-energies from

Eq. (6.396) and G
(1)r/a/<
σ,τ = G

(2)r/a/<
σ,τ /〈nσ̄〉. Performing the same Ansatz on the double-particle GF,
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Figure 6.21: (Color online) The stability diagram of a SSJ with εσ = 2.0 eV, U = 4.0 eV, ΓL = ΓR = 0.05 eV.
(a) The uncorrect result obtained by means of the widely used formula in Eq. (6.403) for the lesser GF is not
symmetric for levels εσ and εσ + U . (b) Results obtained by means of our Ansatz in Eq. (6.401) shows correctly
symmetric for levels εσ and εσ + U .

from Eq. (6.395b) we can get

G(2)< = G(2)rΣ(2)<G(2)a, (6.402)

with Σ
(2)<
σ = Σ<

σ /〈nσ̄〉.
The lesser GFs in Eq. (6.401) can also be obtained directly from the general formula [53]

G< = G<
0 +Gr

0ΣrG< +Gr
0Σ<Ga +G<

0 ΣaGa,

with the help of the Ansatz in Eq. (6.400). It should be noted that Eq. (6.401) is very different from the

lesser GF formula,

G< = GrΣ<Ga, (6.403)

with the self-energy Σ< containing only contributions from the electrodes. The equation (6.403) is widely

used for both first-principle [35, 45, 41] and model Hamiltonian calculations. [117]

The numerical calculation results of conductance dependence on the bias and gate voltages by the

two different NEGF Eqs. (6.401) and (6.403) are shown in Fig. 6.21. As we can see in the left panel, the

adoption of Eq. (6.403) results in an incorrectly symmetry-breaking in the gate potential. This wrong

behavior is corrected in the right panel where Eq. (6.401) has been used.

Note, that the expressions for the retarded and lesser functions, described above, can be obtained in

a more formal way by the EOM method formulated on the Keldysh contour.

Comparison with the master equation result In the single site model with two (spin-up and spin-

down) levels it is possible to make the direct comparison between our Ansatz and the master equation
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Figure 6.22: (Color online) The comparison of the master equation method and our Ansatz for the differential con-
ductance of the two level model with ε↑ = −0.35 eV, ε↓ = −0.65 eV, U = 1.0 eV, Vg = 1.0 V, ΓL = ΓR = 0.05 eV.

methods. For the latter, we used the well known master equations for quantum dots [64, 65].

In the Fig. 6.22 the typical curves of the differential conductance as a function of the bias voltage at

fixed gate voltage obtained by the two methods are shown together: there is basically no difference in the

results obtained by these two methods. In the Fig. 6.23 the contour plot of the differential conductance

obtained by our Ansatz is shown. We do not present here the contour plot obtained by the master

equation method because it looks exactly the same.

It is quite clear from the presented figures that our Ansatz and the master equation method give

essentially the same results in the limit of weak coupling to the leads. The systematic investigation of the

deviations between the two methods at stronger tunneling will be presented in a separate publication.

It is important that our Ansatz can be applied straightforwardly to multilevel systems in the case

when the exact eigenstates of an isolated system are unknown and the usage of the master equation

method is not easy. In this paper we consider the simplest example of such a system, namely a double

site case.

6.4.1.3 Double quantum dot (two sites)

We now return to the investigation of the DSJ system (Fig. 6.24) with Coulomb interaction on each site.

The Hamiltonian is expressed as follows,

H = HD +Ht +
∑

α

(Hα +HαD),
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Figure 6.23: (Color online) The stability diagram (the contour plot of the differential conductance) calculated by
our Ansatz for the two level model with parameters as in Fig. 6.22. The latter is indicated with a dash line at
Vg = 1.0 V. ε↓ = −0.65 eV, U = 1.0 eV,
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where

HD =
∑

i,σ

εi,σd
†
i,σdi,σ +

Ui

2
ni,σni,σ̄,

Ht =
∑

i6=j,σ

t

2
(d†i,σdj,σ + d†j,σdi,σ),

Hα,σ =
∑

k,σ

ε
(α)
k,σc

†
α,k,σcα,k,σ,

HαD,σ =
∑

k,σ

(

Vα,k,σc
†
α,k,σdi,σ + V ∗α,k,σd

†
i,σcα,k,σ

)

,

with i, j = 1, 2 indicate the site, t is the constant for electron hopping between different sites.

With the help of the EOM, and by means of the truncation approximation on the double-particle

GFs, we obtain the closed form for the retarded GFs as follows

(ω − εi,σ − Σr
i,σ)G

(U,t)r
i,σ;j,τ = δi,jδσ,τ + UiG

(2)(U,t)r
i,σ;j,τ + t G

(U,t)r
i,σ;j,τ , (6.404a)

(ω − εi,σ − Ui − Σr
i,σ)G

(2)(U,t)r
i,σ;j,τ = 〈ni,σ̄〉δi,jδσ,τ + t ni,σ̄G

(U,t)r
i,σ;j,τ , (6.404b)

where the DSJ retarded GFs are defined as

G
(U,t)r
i,j;σ,τ = 〈〈di,σ|d†j,τ 〉〉r, (6.405)

G
(2)(U,t)r
i,j;σ,τ = 〈〈ni,σ̄di,σ|d†j,τ 〉〉r. (6.406)

Here ī means ‘NOT i’, and Σr
i,σ are the electron self-energy from leads.

From Eqs. (6.404a), (6.404b) and performing the same Ansatz as in the case of SSJ, we can obtain

the DSJ lesser GFs with Coulomb-interaction effects as follows

G(U,t)<(ω) = (1 +G(U,t)rΣr
t)G

(U)<(1 + Σa
tG

(U,t)a) +G(U,t)rΣ<
t G

(U,t)a, (6.407)

Figure 6.24: (Color online) The general configuration of a double site junction. The levels ε1,2 with charging
energies U1,2 are connected via t and coupled to the electrodes via the linewidth injection rates γ i

α.
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with

Σr
t = Σa

t =













0 t 0 0

t 0 0 0

0 0 0 t

0 0 t 0













,

and Σ<
t = 0. G(U)< is the DSJ lesser GF with the same form as Eq. (6.401), but taking

U =













U1 0 0 0

0 U2 0 0

0 0 U1 0

0 0 0 U2













, Γα =













γ1
α 0 0 0

0 γ2
α 0 0

0 0 γ1
α 0

0 0 0 γ2
α













, (6.408)

where γi
α indicates the line width function of lead α to site i, and Ui is the charging energy at site i. Gr/a

and G(2)r/a are the GF matrix from Eqs. (6.404a) and (6.404b). Here, in order to distinguish different

GFs, we introduce the subscript ‘(U, t)’ for the one with both Coulomb interaction U and inter-site

hopping t, while ‘(U)’ for the one only with Coulomb interaction.

For our models, the lesser GFs in Eq. (6.401), (6.402) and (6.407), which are obtained with help

of our Ansatz, can also be obtained by the EOM NEGF formula (6.331) within the same truncation

approximation.

The current can be generally written as [106]

J =
ie

2~

∫

dε

2π
Tr{(ΓL − ΓR)G(U,t)< + [fL(ω)ΓL − fR(ω)ΓR](G(U,t)r −G(U,t)a)},

where the lesser GF is given by Eq. (6.407). The differential conductance is defined as

G =
∂J

∂Vbias
,

where the bias voltage is defined as Vbias = (µR − µL)/e.

Serial configuration By taking γ2
L = γ1

R = 0, we obtain a serial DSJ, which could describe the kind

of molecular quantum junctions like the ones studied in Ref. [125]. First, at small bias voltages, the

conductance with the two gate voltages Vg1
and Vg2

was calculated, and the relative stability diagram

was obtained as shown in Fig. 6.25. Because of the double degeneracy (spin-up and spin-down) considered

for each site and electrons hopping between the dots, there are eight resonance-tunnelling regions. This

result is consistent with the master-equation approach. [109]

Further, we studied the nonequilibrium current for large bias-voltages (Fig. 6.26). Because ε1,σ and

ε2,σ are taken as asymmetric, for the case without Coulomb interaction, the I-V curve is asymmetric for

±Vbias, and there are one step and one maximum for the current. The step contributes to one peak for
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Figure 6.25: (Color online) The stability diagram of a serial DSJ with ε1,σ = ε2,σ = −0.15 eV, U1 = U2 = 0.3 eV,
t = 0.05 eV, γ1

L = γ2
R = 0.02 eV, γ2

L = γ1
R = 0 ,Vbias = 0.005V . The maximums of conductance are observed when

the levels of the first site (ε1,σ or ε1,σ +U) are overlapped with the levels of the second site (ε2,σ or ε2,σ +U), and
with the Fermi energy in the leads. The splitting of the four maximums is due to the hopping between the dots.

Figure 6.26: (Color online) Current and conductance vs. bias-voltage of a DSJ far from equilibrium with parame-
ters ε1,σ = 0.5 eV, ε2,σ = −0.5 eV, U1 = U2 = U = 0.2 eV, t = 0.07 eV, γ1

L = γ2
R = 0.03 eV, Vg2

= −Vg1
= Vbias/4

and VR = −VL = Vbias/2. The red curve represents the current, while the blue the conductance. The inset is
the blow-up for the conductance peak split. The dash and dot-dash curves are for current and conductance with
U = 0, respectively.
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Figure 6.27: (Color online) The processes involved in the transport characteristics in figure 6.26. ε1 ≡ ε1,σ,
ε2 ≡ ε2,σ, The red line indicates electron resonant-tunnelling. a) The first conductance peak. b) The second
conductance peak. c) The pseudo-peak of conductance. d) The first current maximum, and the red line indicates
resonant tunnelling of electrons. e) The second current maximum for electron resonant tunnelling. f) The dip of
conductance.

the conductance. When we introduce the Coulomb interaction to the system, the one conductance peak

is split into several: two peaks, one pseudo-peak and one dip, while the current maximum comes to be

double split (see Fig. 6.26). The origin of this is in the effective splitting of the degenerate level when one

of the spin states is occupied and the other is empty. When both spin states are occupied, the degeneracy

is restored.

This process can be illustrated by the help of Fig. 6.27. At zero bias-voltage, ε2,σ is occupied and ε1,σ

is empty. Then we start to increase the bias voltage. a) The level ε2,σ +U is first opened for transport. It

will contribute the first peak for conductance. b) Further, the levels ε2,σ and ε1,σ come into the transport

window between the left and the right Fermi levels, resulting in the second peak. c) When the level

ε1,σ + U comes into play, only a pseudo-peak appears. This is because there is only a little possibility

for electrons to occupy the level ε1,σ under positive bias voltage. d) Levels ε2,σ +U and ε1,σ meet, which

results in electron resonant-tunnelling and leads to the first maximum of the current. Then a new level

ε1,σ + U appears over the occupied ε1,σ due to the Coulomb interaction. e) The meeting of ε2,σ and ε1,σ

results in electron resonant tunnelling. It means that ε1,σ will be occupied, which leads to the appearance

of a new level ε1,σ +U . Then ε2,σ +U meets ε1,σ +U and another resonant tunnelling channel is opened

for electrons. The two channels result in the second current maximum. f) finally, the level ε1,σ + U

disappears if the level ε1,σ is empty. This means that a dip appears in the conductance.

It should be noted that the characteristics of serial DSJ in Fig. 6.26 have showed some reasonable

similarities to experiments of a single-molecule diode. [125]

Parallel configuration If on the other hand, the two sites are symmetrically connected to the elec-

trodes, possibly with a small inter-dot hopping, but with charging energies U1 and U2 fixed to different

scales for transport. The resulting stability diagram contains both interference effects for parallel path-
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Figure 6.28: (Color online) Nested stability diagram of a parallel DSJ with parameters ε1,σ = −1.8 eV, ε2,σ =
−0.3 eV, U1 = 3.6 eV, U2 = 0.6 eV t = 0.001 eV, γ1

L = γ1
R = 0.04 eV, γ2

L = γ2
R = 0.05 eV, Vg2

= Vg1
/2 = Vg/2

and VR = −VL = Vbias/2. See discussion in the text.

ways and an overlap of U1 and U2 stability diagrams, which we refer to a nesting characteristic. (see

Fig. 6.28).

The physics of the weak lines in the figure can be understood by the help of charging effects. For

simplicity, here we would ignore the site index i. In the region of large positive gate voltage at zero bias

voltage, ε↑ and ε↓ are all empty, which means that the two levels are degenerate. Therefore adding a

bias voltage, first, there will be two channels (ε↑ and ε↓) opened for current (thick lines). After then,

one level εσ (spin-up or spin-down) is occupied, while the other obtains a shift for Coulomb interaction:

εσ̄ → εσ̄ +U . Therefore, when the bias voltage is further increased to make the Fermi-window boundary

meeting level εσ̄ + U , only one channel is opened for the current, which results in the weak lines in

Fig. 6.28, which is the characteristic of CB. The similar case appears in the region of large negative gate

voltages.

Finally, we here introduced a powerful Ansatz for the lesser Green function, which is consistent

with both the Dyson-equation approach and the equation-of-motion approach. By using this Ansatz

together with the standard equation-of-motion technique for the retarded and advanced Green functions,

we obtained the NEGF for both the single and the double site junctions in the Coulomb blockade regime

at finite voltages and calculated the transport observables. The method can be applied to describe self-

consistently transport through single molecules with strong Coulomb interaction and arbitrary coupling

to the leads.

To test our method, we here analyzed the CB stability diagrams for a SSJ and a DSJ. Our results

are all consistent with the results of experiments and the master-equation approach. We showed, that

the improved lesser Green function gives better results for weak molecule-to-contact couplings, where a



224 Green function techniques in the treatement of transport at the molecular scale

comparison with the master equation approach is possible.

For the serial configuration of a DSJ, such as a donor/acceptor rectifier, the I-V curves maintain a

diode-like behavior, as it can be already inferred by coherent transport calculations. [126] Besides, we

predict that as a result of charging effects, one conductance peak will be split into three peaks and one

dip, and one current maximum into two. For a DSJ parallel configuration, due to different charging

energies on the two dot sites, the stability diagrams show peculiar nesting characteristics.



6.4. Applications 225

6.4.2 Nonequilibrium vibrons

Though the electron-vibron model described in the Section II has a long history, the many questions

it implies are not answered up to now. While the isolated electron-vibron model can be solved exactly

by the so-called polaron or Lang-Firsov transformation [69, 70, 71], the coupling to the leads produces

a true many-body problem. The inelastic resonant tunneling of single electrons through the localized

state coupled to phonons was first considered in Refs. [72, 73, 74, 75]. There, the exact solution in

the single-particle approximation was derived, ignoring completely the Fermi sea in the leads. At strong

electron-vibron couplings and weak couplings to the leads, satellites of the main resonant peak are formed

in the spectral function (Fig. 6.11). The number of the relevant side-bands is determined by the well known

Huang-Rhys factor [76] g = (λ/ω0)2. The question which remains is whether these side-bands can be

observed in the differential conductance, when the coupling to all electrons in the leads should be taken

into account simultaneously. New theoretical treatments were presented recently in Refs. [23, 24, 25, 26,

27, 28, 29, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 90, 87, 88, 89, 91, 92, 93]. In parallel, the theory of

inelastic resonant tunneling in scanning tunneling spectroscopy was developed [94, 95, 96, 97, 98, 99].

For a recent review of the electron-vibron problem and its relation to charge transport at the molecular

scale see Ref. [27].

Many interesting results by the investigation of quantum transport in the strong electron-vibron

coupling limit has been achieved with the help of the master equation approach [80, 83, 87, 88, 89].

This method, however, is valid only in the limit of very weak molecule-to-lead coupling and neglects all

spectral effects, which are the most important at finite coupling to the leads.

6.4.2.1 Nonequilibrium Dyson-Keldysh method

The model electron-vibron Hamiltonian We use the minimal transport model described in the

previous sections. For convenience, we present the Hamiltonian here once more. The full Hamiltonian is

the sum of the molecular Hamiltonian ĤM , the Hamiltonians of the leads ĤR(L), the tunneling Hamilto-

nian ĤT describing the molecule-to-lead coupling, the vibron Hamiltonian ĤV including electron-vibron

interaction and coupling of vibrations to the environment (describing dissipation of vibrons)

Ĥ = ĤM + ĤV + ĤL + ĤR + ĤT . (6.409)

A molecule is described by a set of localized states |α〉 with energies εα and inter-orbital overlap

integrals tαβ by the following model Hamiltonian:

Ĥ
(0)
M =

∑

α

(εα + eϕα(t)) d†αdα +
∑

α6=β

tαβd
†
αdβ . (6.410)

Vibrations and the electron-vibron coupling are described by the Hamiltonian [23, 24, 25, 29] (~ = 1)

ĤV =
∑

q

ωqa
†
qaq +

∑

αβ

∑

q

λq
αβ(aq + a†q)d†αdβ . (6.411)
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Here vibrations are considered as localized phonons and q is an index labeling them, not the wave-vector.

The first term describes free vibrons with the energy ωq. The second term represents the electron-vibron

interaction. We include both diagonal coupling, which describes a change of the electrostatic energy with

the distance between atoms, and the off-diagonal coupling, which describes the dependence of the matrix

elements tαβ over the distance between atoms.

The Hamiltonians of the right (R) and left (L) leads read

Ĥi=L(R) =
∑

kσ

(εikσ + eϕi)c
†
ikσcikσ, (6.412)

ϕi(t) are the electrical potentials of the leads. Finally, the tunneling Hamiltonian

ĤT =
∑

i=L,R

∑

kσ,α

(

Vikσ,αc
†
ikσdα + h.c.

)

(6.413)

describes the hopping between the leads and the molecule. A direct hopping between two leads is

neglected.

Keldysh-Dyson equations and self-energies We use the nonequilibrium Green function (NGF)

method, as introduced in Section III. The current in the left (i = L) or right (i = R) contact to the

molecule is described by the expression

Ji=L,R =
ie

~

∫

dε

2π
Tr
{

Γi(ε− eϕi)
(

G<(ε) + f0
i (ε− eϕi)

[

GR(ε) − GA(ε)
])}

, (6.414)

where f0
i (ε) is the equilibrium Fermi distribution function with chemical potential µi, and the level-width

function is

Γi=L(R)(ε) = Γiαβ(ε) = 2π
∑

kσ

Vikσ,βV
∗
ikσ,αδ(ε− εikσ).

The lesser (retarded, advanced) Green function matrix of a nonequilibrium molecule G<(R,A) ≡
G

<(R,A)
αβ can be found from the Dyson-Keldysh equations in the integral form

GR(ε) = GR
0 (ε) + GR

0 (ε)ΣR(ε)GR(ε), (6.415)

G<(ε) = GR(ε)Σ<(ε)GA(ε), (6.416)

or from the corresponding equations in the differential form (see e.g. Refs. [28, 29] and references therein).

Here

ΣR,< = Σ
R,<(T )
L + Σ

R,<(T )
R + ΣR,<(V ) (6.417)

is the total self-energy of the molecule composed of the tunneling (coupling to the left and right leads)

self-energies

Σ
R,<(T )
j=L,R ≡ Σ

R,<(T )
jαβ =

∑

kσ

{

V ∗jkσ,αG
R,<
jkσ Vjkσ,β

}

, (6.418)
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and the vibronic self-energy ΣR,<(V ) ≡ Σ
R,<(V )
αβ .

For the retarded tunneling self-energy Σ
R(T )
i one obtains

Σ
R(T )
i (ε) = Λi(ε− eϕi) −

i

2
Γi(ε− eϕi), (6.419)

where Λi is the real part of the self-energy, which usually can be included in the single-particle Hamilto-

nian Ĥ
(0)
M , and Γi describes level broadening due to coupling to the leads. For the corresponding lesser

function one finds

Σ
<(T )
i (ε) = iΓi(ε− eϕi)f

0
i (ε− eϕi). (6.420)

In the standard self-consistent Born approximation, using the Keldysh technique, one obtains for the

vibronic self-energies [83, 23, 24, 25, 84, 85, 27, 29]

ΣR(V )(ε) =
i

2

∑

q

∫

dω

2π

(

MqGR
ε−ωMqDK

qω+

+MqGK
ε−ωMqDR

qω − 2DR
qω=0M

qTr
[

G<
ω Mq

])

, (6.421)

Σ<(V )(ε) = i
∑

q

∫

dω

2π
MqG<

ε−ωMqD<
qω, (6.422)

where GK = 2G< + GR − GA is the Keldysh Green function, and Mq ≡M q
αβ .

If vibrons are noninteracting, in equilibrium, and non-dissipative, then the vibronic Green functions

write:

DR
0 (q, ω) =

1

ω − ωq + i0+
− 1

ω + ωq + i0+
, (6.423)

D<
0 (q, ω) = − 2πi

[

(f0
B(ωq) + 1)δ(ω + ωq)

+f0
B(ωq)δ(ω − ωq)

]

, (6.424)

where the equilibrium Bose distribution function is

f0
B(ω) =

1

exp (ω/T ) − 1
. (6.425)

In the Migdal model the retarded vibron function is calculated from the Dyson-Keldysh equation

DR(q, ω) =
2ωq

ω2 − ω2
q − 2ωqΠR(q, ω)

, (6.426)

where Π(q, ω) is the polarization operator (boson self-energy). The equation for the lesser function

(quantum kinetic equation in the integral form) is

(ΠR
qω − ΠA

qω)D<
qω − (DR

qω −DA
qω)Π<

qω = 0, (6.427)
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this equation in the stationary case considered here is algebraic in the frequency domain.

The polarization operator is the sum of two parts, environmental and electronic: ΠR,<
qω = Π

R,<(env)
qω +

Π
R,<(el)
qω .

The environmental equilibrium part of the polarization operator can be approximated by the simple

expressions

ΠR(env)(q, ω) = − i

2
γqsign(ω), (6.428)

Π<(env)(q, ω) = −iγqf
0
B(ω)sign(ω), (6.429)

where γg is the vibronic dissipation rate, and f 0
B(ω) is the equilibrium Bose-Einstein distribution function.

The electronic contribution to the polarization operator within the SCBA is

ΠR(el)(q, ω) = −i
∫

dε

2π
Tr
(

MqG<
ε MqGA

ε−ω + MqGR
ε MqG<

ε−ω

)

, (6.430)

Π<(el)(q, ω) = −i
∫

dε

2π
Tr
(

MqG<
ε MqG>

ε−ω

)

. (6.431)

We obtained the full set of equations, which can be used for numerical calculations.

6.4.2.2 Single-level model: spectroscopy of vibrons

The isolated single-level electron-vibron model is described by the Hamiltonian

ĤM+V = (ε0 + eϕ0)d†d+ ω0a
†a+ λ

(

a† + a
)

d†d, (6.432)

where the first and the second terms describe the free electron state and the free vibron, and the third

term is electron-vibron minimal coupling interaction.

The electrical potential of the molecule ϕ0 plays an important role in transport at finite voltages. It

describes the shift of the molecular level by the bias voltage, which is divided between the left lead (tip),

the right lead (substrate), and the molecule as ϕ0 = ϕR + η(ϕL − ϕR) [100]. We assume the simplest

linear dependence of the molecular potential (η = const), but its nonlinear dependence [101] can be easily

included in our model.

Here we assume, that the vibrons are in equilibrium and are not excited by the current, so that the

self-consistent Born approximation is a good starting point. The vibron Green function are assumed to

be equilibrium with the broadening defined by the external thermal bath, see for details Refs. [24, 84, 85,

27, 29].

For the single-level model all equations are significantly simplified. Combining JL and JR the expres-

sion for the current can be written for energy independent ΓL(R) (wide-band limit) as

J =
e

h

ΓLΓR

ΓR + ΓL

∫

dεA(ε)
[

f0(ε− eϕL) − f0(ε− eϕR)
]

. (6.433)
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Figure 6.29: (Color online) Spectral function at different electron-vibron couplings: λ/ω0 = 0.4 (black), λ/ω0 = 1.2
(blue, dashed), and λ/ω0 = 2 (red); at ε0/ω0 = 5, ΓL/ω0 = ΓR/ω0 = 0.1. In the insert the spectral function at
λ/ω0 = 1.2 is shown at finite voltage, when the level is partially filled. Energies are in units of ~ω0.

It looks as simple as the Landauer-Büttiker formula, but it is not trivial, because the spectral density

A(ε) = −2ImGR(ε) now depends on the distribution function of the electrons in the fluctuating molecule

and hence the applied voltage, ϕL = −ϕR = V/2 [28]. Indeed, GR(ε) can be found from (6.201)

GR(ε) =
1

ε− ε̃0 − ΣR(V )(ε) + i(ΓL + ΓR)/2
, (6.434)

where ΣR(V )(ε) is a functional of the electron distribution function inside a molecule. Actually, the lesser

function G<(ε) is used in the quantum kinetic formalism as a distribution function. In the single-level

case the usual distribution function can be introduced through the relation

G<(ε) = iA(ε)f(ε). (6.435)

Note the essential difference between symmetric (ΓL = ΓR) and asymmetric junctions. It is clear from

the noninteracting solution of the transport problem. Neglecting for a moment the vibron self-energies,

we obtain the noninteracting distribution function

f(ε) =
ΓLf

0
L(ε− eϕL) + ΓRf

0
R(ε− eϕR)

ΓL + ΓR
. (6.436)

For strongly asymmetric junctions (e.g. ΓL � ΓR) the distribution function remains close to the equilib-

rium function in the right lead f 0
R(ε−eϕR), thus essentially simplifying the solution. While for symmetric

junctions the distribution function has the double-step form and is very different from the equilibrium

one.

A typical example of the spectral function at zero voltage is shown in Fig. 6.29. At finite voltage it

should be calculated self-consistently. In the insert the spectral function of the symmetric junction at
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Figure 6.30: Differential conductance of a symmetric junction (η = 0.5, ΓR = ΓL) at different molecule-to-lead
coupling, from ΓL/ω0 = 0.1 (lower curve) to ΓL/ω0 = 10 (upper curve), λ/ω0 = 1, ε0/ω0 = 2. Voltage is in the
units of ~ω0/e.

finite voltage is shown, it is changed essentially because the distribution function is changed.

Let us discuss a general picture of the vibronic transport in symmetric and asymmetric single-molecule

junctions, provided in experiments with the molecular bridges and STM-to-molecule junctions, respec-

tively. The differential conductance, calculated at different molecule-to-lead coupling, is shown in Fig. 6.30

(symmetric) and Fig. 6.31 (asymmetric). At weak coupling, the vibronic side-band peaks are observed,

reproducing the corresponding peaks in the spectral function. At strong couplings the broadening of the

electronic state hides the side-bands, and new features become visible. In the symmetric junction, a sup-

pression of the conductance at V ' ±~ω0 takes place as a result of inelastic scattering of the coherently

transformed from the left lead to the right lead electrons. In the asymmetric junction (Fig. 6.31), the

usual IETS increasing of the conductance is observed at a negative voltage V ' −~ω0, this feature is

weak and can be observed only in the incoherent tail of the resonant conductance. We conclude, that

the vibronic contribution to the conductance can be distinguished clearly in both coherent and tunneling

limits.

Now let us discuss the particular situation of STS experiments [102, 103, 104, 105]. Here we con-

centrate mainly on the dependence on the tip-to-molecule distance [103]. When the tip (left lead in our

notations) is far from the molecule, the junction is strongly asymmetric: ΓL � ΓR and η → 0, and the

conductance is similar to that shown in Fig. 6.31. When the tip is close to the molecule, the junction

is approximately symmetric: ΓL ≈ ΓR and η ≈ 0.5, and the conductance curve is of the type shown in

Fig. 6.30. We calculated the transformation of the conductance from the asymmetric to symmetric case

(Fig. 6.32). It is one new feature appeared in asymmetric case due to the fact that we started from a

finite parameter η = 0.2 (in the Fig. 6.31 η = 0), namely a single peak at negative voltages, which is

shifted to smaller voltage in the symmetric junction. The form and behavior of this peak is in agreement

with experimental results [103].

In conclusion, at weak molecule-to-lead (tip, substrate) coupling the usual vibronic side-band peaks
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Figure 6.31: Differential conductance of an asymmetric junction (η = 0, ΓR = 20ΓL) at different molecule-to-lead
coupling, from ΓR/ω0 = 0.2 (lower curve) to ΓR/ω0 = 4 (upper curve), λ/ω0 = 2, ε0/ω0 = 5. The voltage is in
the units of ~ω0/e

in the differential conductance are observed; at stronger coupling to the leads (broadening) these peaks

are transformed into step-like features. A vibronic-induced decreasing of the conductance with voltage is

observed in high-conductance junctions. The usual IETS feature (increasing of the conductance) can be

observed only in the case of low off-resonant conductance. By changing independently the bias voltage

and the tip position, it is possible to determine the energy of molecular orbitals and the spectrum of

molecular vibrations. In the multi-level systems with strong electron-electron interaction further effects,

such as Coulomb blockade and Kondo effect, could dominate over the physics which we address here;

these effects have to be included in a subsequent step.

6.4.2.3 Multi-level model: nonequilibrium vibrons

Basically there are two main nonequilibrium effects: the electronic spectrum modification and excitation

of vibrons (quantum vibrations). In the weak electron-vibron coupling case the spectrum modification is

usually small (which is dependent, however, on the vibron dissipation rate, temperature, etc.) and the

main possible nonequilibrium effect is the excitation of vibrons at finite voltages. We have developed

an analytical theory for this case [29]. This theory is based on the self-consistent Born approximation

(SCBA), which allows to take easily into account and calculate nonequilibrium distribution functions of

electrons and vibrons.

If the mechanical degrees of freedom are coupled strongly to the environment (dissipative vibron),

then the dissipation of molecular vibrations is determined by the environment. However, if the coupling

of vibrations to the leads is weak, we should consider the case when the vibrations are excited by the

current flowing through a molecule, and the dissipation of vibrations is also determined essentially by the

coupling to the electrons. Here , we show that the effects of vibron emission and vibronic instability are

important especially in the case of electron-vibron resonance.

We simplify the equations and obtain some analytical results in the vibronic quasiparticle approxima-
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Figure 6.32: (Color online) Differential conductance at different molecule-to-STM coupling (see the text), from
asymmetric junction with ΓL/ω0 = 0.025, ΓR/ω0 = 0.5 and η = 0.2 (lower curve, blue thick line) to symmetric

junction with ΓL/ω0 = ΓR/ω0 = 0.5 and η = 0.5 (upper curve, red thick line), λ/ω0 = 1, ε0/ω0 = 2. Voltage is
in the units of ~ω0/e

tion, which assumes weak electron-vibron coupling limit and weak external dissipation of vibrons:

γ∗q = γq − 2ImΠR(ωq) � ωq. (6.437)

So that the spectral function of vibrons can be approximated by the Dirac δ, and the lesser function

reads

D<(q, ω) = −2πi [(Nq + 1)δ(ω + ωq) +Nqδ(ω − ωq)] , (6.438)

where Nq is (nonequilibrium) number of vibrations in the q-th mode. So, in this approximation the

spectrum modification of vibrons is not taken into account, but the possible excitation of vibrations is

described by the nonequilibrium Nq. The dissipation of vibrons is neglected in the spectral function, but

is taken into account later in the kinetic equation for Nq. A similar approach to the single-level problem

was considered recently in [96, 97, 98, 99, 83, 84, 85]. The more general case with broadened equilibrium

vibron spectral function seems to be not very interesting, because in this case vibrons are not excited.

Nevertheless, in the numerical calculation it can be easy taken into consideration.

From the general quantum kinetic equation for vibrons, we obtain in this limit

Nq =
γqN

0
q − ImΠ<(ωq)

γq − 2ImΠR(ωq)
. (6.439)

This expression describes the number of vibrons Nq in a nonequilibrium state, N 0
q = f0

B(ωq) is the

equilibrium number of vibrons. In the linear approximation the polarization operator is independent

of Nq and −2ImΠR(ωq) describes additional dissipation. Note that in equilibrium Nq ≡ N0
q because

ImΠ<(ωq) = 2ImΠR(ωq)f0
B(ωq). See also detailed discussion of vibron emission and absorption rates in

Refs. [96, 97, 98, 99].
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For weak electron-vibron coupling the number of vibrons is close to equilibrium and is changed because

of vibron emission by nonequilibrium electrons, Nq is roughly proportional to the number of such electrons,

and the distribution function of nonequilibrium electrons is not change essentially by the interaction

with vibrons (perturbation theory can be used). The situation changes, however, if nonequilibrium

dissipation −2ImΠR(ωq) is negative. In this case the number of vibrons can be essentially larger than

in the equilibrium case (vibronic instability), and the change of electron distribution function should be

taken into account self-consistently.

In the stationary state the nonlinear dissipation rate

γ∗q = γq − 2ImΠR(ωq) (6.440)

is positive, but the nonequilibrium contribution to dissipation −2ImΠR(ωq) remains negative.

Additionally to the vibronic quasiparticle approximation, the electronic quasiparticle approximation

can be used when the coupling to the leads is weak. In this case the lesser function can be parameterized

through the number of electrons Fη in the eigenstates of the noninteracting molecular Hamiltonian H
(0)
M

G<
αβ = i

∑

γη

AαγSγηFηS
−1
ηβ , (6.441)

we introduce the unitary matrix S, which transfer the Hamiltonian H ≡ H
(0)
Mαβ into the diagonal form

H̃ = S−1HS, so that the spectral function of this diagonal Hamiltonian is

Ãδη(ε) = 2πδ(ε− ε̃δ)δδη, (6.442)

where ε̃δ are the eigenenergies.

Note that in the calculation of the self-energies and polarization operators we can not use δ-approximation

for the spectral function (this is too rough and results in the absence of interaction out of the exact

electron-vibron resonance). So that in the calculation we use actually (6.441) with broadened equilib-

rium spectral function. This approximation can be systematically improved by including nonequilibrium

corrections to the spectral function, which are important near the resonance. It is important to comment

that for stronger electron-vibron coupling vibronic side-bands are observed in the spectral function and

voltage-current curves at energies ε̃δ ± nωq, we do not consider these effects in the rest of our paper and

concentrate on resonance effects.

After correspondingly calculations we obtain finally

Nq =
γqN

0
q −∑ηδ κηδ(ωq)Fη(Fδ − 1)

γq −
∑

ηδ κηδ(ωq)(Fη − Fδ)
, (6.443)

where coefficients κηδ are determined by the spectral function and electron-vibron coupling in the diagonal

representation

κηδ(ωq) =

∫

dε

2π
M̃q

ηδÃδδ(ε− ωq)M̃q
δηÃηη(ε), (6.444)
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Figure 6.33: (Color online) Vibronic emission in the symmetric multilevel model: voltage-current curve, differential
conductance, and the number of excited vibrons in the off-resonant (triangles) and resonant (crosses) cases (details
see in the text).

Fη =
Γ̃Lηηf

0
Lη +Γ̃Rηηf

0
Rη +

∑

qη

[

ζ−q
ηδ FδNq +ζ+q

ηδ Fδ(1+Nq)
]

Γ̃Lηη +Γ̃Rηη +
∑

qη

[

ζ−q
ηδ (1−Fδ +Nq)+ζ+q

ηδ (Fδ +Nq)
] , (6.445)

ζ±q
ηδ = M̃q

ηδÃδδ(ε̃η ± ωq)M̃q
δη, (6.446)

here Γ̃iηη and f0
iη are the level width matrix in the diagonal representation and Fermi function at energy

ε̃η − eϕi.

These kinetic equations are similar to the usual golden rule equations, but are more general.

Now let us consider several examples of vibron emission and vibronic instability.

First we consider the most simple case, when the instability is not possible and only vibron emission

takes place. This corresponds to a negative imaginary part of the electronic polarization operator:

ImΠR)(ωq) < 0. From the Eq. (6.444) one can see that for any two levels with the energies ε̃η > ε̃δ

the coefficient κηδ is larger than κδη, because the spectral function Ãδδ(ε) has a maximum at ε = ε̃δ.

The contribution of κηδ(ωq)(Fη − Fδ) is negative if Fη < Fδ. This takes place in equilibrium, and in

nonequilibrium for transport through symmetric molecules, when higher energy levels are populated after

lower levels. The example of such a system is shown in Fig. 6.33. Here we consider a simple three-level

system (ε̃1 = 1, ε̃2 = 2, ε̃3 = 3) coupled symmetrically to the leads (ΓLη = ΓRη = 0.01). The current-

voltage curve is the same with and without vibrations in the case of symmetrical coupling to the leads

and in the weak electron-vibron coupling limit (if we neglect change of the spectral function). The figure

shows how vibrons are excited, the number of vibrons NV in the mode with frequency ω0 is presented in

two cases. In the off-resonant case (green triangles) NV is very small comparing with the resonant case

(ω0 = ε̃2 − ε̃1, red crosses, the vertical scale is changed for the off-resonant points). In fact, if the number
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Figure 6.34: (Color online) Vibronic instability in an asymmetric multilevel model: voltage-current curve, dif-
ferential conductance, and the number of excited vibrons (crosses). Dashed line show the voltage-current curve
without vibrons (details see in the text).

of vibrons is very large, the spectral function and voltage-current curve are changed. We shall consider

this in a separate publication.

Now let us consider the situation when the imaginary part of the electronic polarization operator can

be positive: ImΠR(ωq) > 0. Above we considered the normal case when the population of higher energy

levels is smaller than lower levels. The opposite case F2 > F1 is known as inversion in laser physics. Such

a state is unstable if the total dissipation γ∗q (6.440) is negative, which is possible only in the nonstationary

case. As a result of the instability, a large number of vibrons is excited, and in the stationary state γ∗q

is positive. This effect can be observed for transport through asymmetric molecules, when higher energy

levels are populated before lower levels. The example of a such system is shown in Fig. 6.34. It is the

same three-level system as before, but the first and second levels are coupled not symmetrically to the

leads (ΓL1 = 0.001, ΓR1 = 0.1, ΓL2 = 0.1, ΓR2 = 0.001). The vibron couple resonantly these levels

(ωq = ε̃2 − ε̃1). The result is qualitatively different from the symmetrical case. The voltage-current curve

is now asymmetric, a large step corresponds to the resonant level with inverted population.

Note the importance of the off-diagonal electron-vibron coupling for the resonant effects. If the matrix

M̃ in the eigen-state representation is diagonal, there is no resonant coupling between different electronic

states.

Finally, let us consider the important case, when initially symmetric molecule becomes asymmetric

when the external voltage is applied. The reason for such asymmetry is simply that in the external electric

field left and right atoms feel different electrical potentials and the position of the levels εα = ε
(0)
α + eϕα

is changed (float) with the external voltage. The example of a such system is shown in Fig. 6.35. Here

we consider a two-level system, one level is coupled electrostatically to the left lead ε̃1 ∝ ϕL, the other

level to the right lead ε̃2 ∝ ϕR, the tunneling coupling to the leads also is not symmetrical (ΓL1 = 0.1,
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Figure 6.35: (Color online) Floating level resonance: voltage-current curve and the number of excited vibrons
(crosses). Dashed line show the voltage-current curve without vibrons (details see in the text).

ΓR1 = 0.001, ΓL2 = 0.001, ΓR2 = 0.1). The frequency of the vibration, coupling these two states, is

ω0 = 1. When we sweep the voltage, a peak in the voltage-current curve is observed when the energy

difference ε̃1 − ε̃2 ∝ eV is going through the resonance ε̃1 − ε̃2 ≈ ω0.
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6.4.3 Coupling to a vibrational contiuum: dissipation and renormalization

6.4.3.1 The model Hamiltonian

In the previous section we have dealt with a simple, but nevertheless physically rich, model describing

the interaction of an electronic level with some specific vibrational mode confined to the quantum dot.

We have seen how to apply in this case the Keldysh non-equilibrium techniques described in Section III

within the self-consistent Born and Migdal approximations. The latter are however appropriate for the

weak coupling limit to the vibrational degrees of freedom. In the opposite case of strong coupling,

different techniques must be applied. For equilibrium problems, unitary transformations combined with

variational approaches can be used, in non-equilibrium only recently some attempts were made to deal

with the problem. [90]

In this section we will consider the case of a multi-level electronic system in interaction with a bosonic

bath [30, 31]. We will use unitary transformation techniques to deal with the problem, but will only focus

on the low-bias transport, so that strong non-equilibrium effects can be disregarded. Our interest is to

explore how the qualitative low-energy properties of the electronic system are modified by the interaction

with the bosonic bath. We will see that the existence of a continuum of vibrational excitations (up to

some cut-off frequency) dramatically changes the analytic properties of the electronic Green function and

may lead in some limiting cases to a qualitative modification of the low-energy electronic spectrum. As

a result, the I-V characteristics at low bias may display “metallic” behavior (finite current) even if the

isolated electronic system does exhibit a band gap. The model to be discussed below has been motivated

by the very exciting electrical transport measurements on short poly(dG)-poly(dC) DNA molecular wires

carried out at the group of N. Tao some time ago [127]. Peculiar in these experiments was the large

measured currents -up to 150 nA at 0.8 V- at low voltages, which stood in strong contrast to the usually

accepted view that DNA should behave as an insulator at low applied bias. Further, a power-law length

scaling of the linear conductance with increasing wire length was demonstrated, indicating that long-

range charge transport was possible. Since the experiments were carried out in an aqueous solution, the

possibility of a solvent-induced modification of the low-energy transport properties of the wire lied at

hand, although additional factors like internal vibrations could also play a role.

The proposed model is based on an earlier work [128] and assumes, within a minimal tight-binding

picture, that the DNA electronic states can be qualitatively classified into extended (conducting) and

localized (non-conducting) states. The former may correspond e.g. to the π-orbital stack of the base pairs,

the latter to energetically deeper lying (w.r.t. the frontier orbitals) base-pair states or sugar-phosphate

backbone states. A further assumption is that any modification of the conducting states through the

environment only takes place through a coupling to the non-conducting set. The tight-binding electronic
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Figure 6.36: Schematic drawing of a DNA molecular wire in contact with a dissipative environment. The central
chain (extended states) with N sites is connected to semiinfinite left (L) and right (R) electronic reservoirs. The
bath only interacts with the side chain sites (c), which we call for simplicity backbone sites, but which collectively
stay for non-conducting, localized electronic states. The Hamiltonian associated with this model is given by
Eqs. (6.447), (6.448), and (6.449) in the main text.

Hamiltonian for N sites can then be written as (see also Fig. 6.36):

Hel = εb
∑

j

b†jbj − t||
∑

j

[

b†jbj+1 + H.c.
]

+ ε
∑

j

c†jcj

− t⊥
∑

j

[

b†jcj + H.c.
]

= HC + Hb + HC-b. (6.447)

Hereby HC and Hb are the Hamiltonians of the extended and localized states (called in what follows

“backbone” states for simplicity), respectively, and HC-b is the coupling between them. t|| and t⊥ are

hopping integrals along the central chain (extended states) and between the localized states and the

central chain, respectively. If not stated otherwise, the on-site energies will be later set equal to zero

to simplify the calculations. Notice that this model displays a gap in the electronic spectrum roughly

proportional to the transversal coupling t⊥. This can be easely seen by looking at the limit N → ∞ which

leads to a periodic system. In this case, the Hamiltonian can be analytically diagonalized and two energy

dispersion curves are obtained, which are given by E±(k) = t|| cos(k)±
√

t2⊥ + t2|| cos2(k). The direct gap

between the two bands is simply δ = 2
√

t2⊥ + t2||. Since this model further shows electron-hole symmetry,

two electronic manifolds (bands in the limit of N → ∞) containing N states each, are symmetrically

situated around the Fermi level, which is taken as the zero of energy.

The gap is obviously temperature independent and furthermore it is expected that transport at ener-

gies E < δ will be strongly suppressed due to the absence of electronic states to suport charge propagation.

As a result, the linear conductance should display a strong exponential dependence as a function of the

chain length N . In view of this behavior, an immediate issue that arises is how stable this electronic struc-

ture, i.e. two electronic manifolds separated by a gap, is against the coupling to an environment. This is
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an issue which reaches farther than the problem of charge transport in DNA wires, since it addresses the

interaction of an open quantum mechanical system with a countable number of electronic energy levels to

a continuum of states (“universe”). A generic example of such a situation is the measurement process in

quantum mechanics. It is well-known that the interaction with complex environments is a source of dis-

sipation and decoherence in quantum mechanical systems. [129] Concerning more specifically the case of

DNA (and proteins), there is broad experimental evidence that the molecule dynamics follows the solvent

dynamics over a broad temperature range. Especially, conformational changes, low-energy vibrational

excitations and the corresponding temperature dependences turn out to be very sensitive to the solvents

dynamics. [130] We will thus consider the vibrational degrees of freedom of counterions and hydration

shells of the solvent as a dynamical bath able to break the electronic phase coherence and additionally to

act as a dissipative environment. We do not consider specific features of the environment but represent

it in a generic way by a bosonic bath of M harmonic oscillators. Then, the previous Hamiltonian can be

extended to:

HW = Hel +
∑

α

ΩαB
†
αBα +

∑

α,j

λαc
†
jcj(Bα +B†α) = Hel + HB + Hc-B, (6.448)

where HB and Hc-B are the phonon bath Hamiltonian and the (localized) state-bath interaction, respec-

tively. Bα is a bath phonon operator and λα denotes the electron-phonon coupling. Note that we assume a

local coupling of the bath modes to the electronic density at the side chain. Later on, the thermodynamic

limit (M → ∞) in the bath degrees of freedom will be carried out and the corresponding bath spectral

density introduced, so that at this stage we do not need to further specify the set of bath frequencies

Ωα and coupling constants λα. Obviously, the bath can be assumed to be in thermal equilibrium and be

described by a canonical partition function.

To complete the formulation of the model, we have to include the interaction of the system with

electronic reservoirs in order to describe charge transport along the same lines as before. We assume, as

usual, a tunnel-type Hamiltonian with the form:

H = HW +
∑

k∈L,R,σ

εkσd
†
kσdkσ +

∑

k∈L,σ

(Vk,1 d
†
kσ b1 + H.c.)

+
∑

k∈R,σ

(Vk,N d†
kσ bN + H.c.) = HW + HL/R + HL-C + HR-C (6.449)

The Hamiltonian of Eq. (6.449) is the starting point of our investigation. For a weak charge-bath

coupling, a perturbative approach similar to the second order Born approximation, as described in the

previous section can be applied. We expect, however, qualitative new effects rather in the opposite limit

of strong coupling to the bath. To deal with this problem, a unitary transformation, the Lang-Firsov (LF)

transformation, can be performed on the Hamiltonian of Eq. (6.449), which allows to eliminate the linear

charge-vibron interaction Hc-B. In the limiting case of an isolated system with a single electron (or hole)

this transformation becomes exact and allows for a full decoupling of electronic and vibronic propagators,

see e.g. Ref. [71]. In the present case, this transformation is not exact and further approximations have
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to be introduced in order to make the problem tractable.

The generator of the LF transformation is given by S =
∑

α,j(λα/Ωα)c†jcj(Bα − B†α) and S† = −S.

In the transformed Hamiltonian H̄ = e SHe−S the linear coupling to the bath is eliminated. One should

notice that in H̄ only the “backbone” part of the Hamiltonian is modified since the conducting state

operators b` as well as the lead operators dkσ are invariant with respect to the above transformation.

The new Hamiltonian reads:

H̄ = HC + HL/R + HB + HL/R-C

+ (ε− ∆)
∑

j

c†jcj − t⊥
∑

j

[

b†jcjX + H.c.
]

, (6.450)

X = exp

[

∑

α

λα

Ωα
(Bα −B†α)

]

, ∆ =
∑

α

λ2
α

Ωα
.

As a result of the LF we get a shift of the onsite energies (polaron shift or reorganization energy in

electron transfer theory) and a renormalization of both the tunneling and of the transversal coupling

Hamiltonian via the bosonic operators X . There is also an additional electron-electron interaction term

which we will not be concerned with in the remaining of this section and is thus omitted. Since we are

mainly interested in qualitative statements, we will assume the wide-band approximation in the coupling

to the electrodes which is equivalent to substituting the electrode self-energies by a purely imaginary

constant, i.e. ΣL,R ≈ −i ΓL,R. We are thus not interested in specific features of the electrode electronic

structure.

To further proceed, let us now introduce two kinds of retarded thermal Green functions related to the

central chain Gj`(t) and to the “backbones” Pj`(t), respectively (taking ~ = 1):

Gj`(t, t
′) = −iΘ(t− t′)

〈

[

bj(t), b†`(t′)
]

+

〉

, (6.451)

Pj`(t, t
′) = −iΘ(t− t′)

〈

[

cj(t)X (t), c†`(t′)X †(t′)
]

+

〉

,

where Θ is the Heaviside function. Notice that the P -Green function doe not have a pure electronic

character but also contains the bath operators X . For a full out-of-equilibrium calculation, the full

Keldysh formalism including lesser- and greater-GF would also be needed. However, as we will briefly

show below, the final expression for the electrical current at low applied voltages and for small transversal

coupling t⊥ will only include the retarded propagators.

We now use the equation of motion technique (EOM) to obtain an expression for the GF Gj`(t). We

first remark that in the time domain two EOM can be written, depending on which time argument in

the double-time GF the time derivative will act. One thus obtains in general:

i ∂tG(t, t′) =
〈

[

b(t), b†(t′)
]

+

〉

δ(t− t′) + (([b(t), H] |b†(t′))).

G(t, t′)[−i ∂t′ ] =
〈

[

b(t), b†(t′)
]

+

〉

δ(t− t′) − ((b(t)|
[

b†(t′), H
]

)).
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The EOM for the GF Gj`(t) reads then in the energy space:

∑

n

[

G−1
0 (E)

]

`n
Gnj(E) = δ`j − t⊥((c`X|b†j)) (6.452)

[

G−1
0 (E)

]

`n
= (E − εb)δn` + t||(δn,`+1 + δn,`−1) − ΣLδ`1δn1 − ΣRδ`NδnN

ΣL(R) =
∑

k∈L(R)

|Vk,1(N)|2
E − εk + i 0+

≈ −i ΓL,R

In the next step, EOM for the “right” time argument t′ of the GF ZX`j (t, t′)((c`(t)X (t)|b†j(t′))) can be

written. This leads to:

∑

m

ZX`m(E)
[

G−1
0 (E)

]

mj
= −t⊥((c`X|c†jX †)) = −t⊥P`j(E) (6.453)

Inserting Eq. (6.453) into Eq. (6.452) we arrive at the matrix equation:

G(E) = G0(E) + G0(E)ΣB(E)G0(E),

which can be transformed into a Dyson-like equation when introducing the irreducible part ΣB(E) =

Σirr
B (E) + Σirr

B (E)G0(E)Σirr
B (E) + . . . :

G(E) = G0(E) + G0(E)Σirr
B (E)G(E), (6.454)

or equivalently:

G−1(E) = G−1
0 (E) − t2⊥P(E) (6.455)

G−1
0 (E) = E1 −HC − ΣL(E) − ΣR(E).

Σirr
B (E) = t2⊥P(E) is the crucial contribution to the GF since it contains the influence of the bosonic

bath. Note that Σirr
B (E) includes the transversal hopping t⊥ to all orders, the leading one being t2⊥.

In the next step, an expression for the electrical current flowing through the system must be derived.

Using the results of Sec. 2, we can directly write the following expression:

I =
2e

h

∫

dE Tr(fL(E) − fR(E)) t(E)

+ t2⊥
2e

h

∫

dE
{

Tr[Σ>
L P< − Σ<

L P>] − (L↔ R)
}

. (6.456)

The first summand has the same form as Landauer’s expression for the current with an effective

transmission function t(E) = Tr[G†ΓRGΓR]. However, the reader should keep in mind that the GFs

appearing in this expression do contain the full dressing by the bosonic bath and hence, t(E) does not
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describe elastic transport. The remaining terms contain explicitly contributions from the bath. It can

be shown after some transformations that the leading term is proportional to (t2⊥)2 so that within a

perturbative approach in t⊥ and at low bias it can be approximately neglected. We therefore remian

with the exression I = 2e
h

∫

dE Tr(fL(E) − fR(E)) t(E) to obtain the current.

To remain consistent with this approximation, the bath selfenergy should also be treated to order t2⊥,

more explicitly:

P`j(t, t′) = ((c`(t)X (t)|c†j(t′)X †(t′)))
≈ −i θ(t− t′)

{〈

c`(t)c
†
j(t′)

〉

〈

X (t)X †(t′)
〉

+
〈

c†j(t′)c`(t)
〉

〈

X †(t′)X (t)
〉

}

≈ −i δ`jθ(t− t′)
{〈

cj(t)c†j(t′)
〉

〈

X (t)X †(t′)
〉

+
〈

c†j(t′)cj(t)
〉

〈

X †(t′)X (t)
〉

}

= −i δ`jθ(t− t′)e−i (ε−∆) t
{

(1 − fc)e
−Φ(t) + fce

−Φ(−t)
}

. (6.457)

In the previous expression we have replaced the full averages of the “backbone” operators by their

zero order values (free propagators). e−Φ(t) =
〈

X (t)X †(0)
〉

B
is a dynamical bath correlation function to

be specified later on. The average 〈·〉B is performed over the bath degrees of freedom. fc is the Fermi

function at the backbone sites. In what follows we consider the case of empty sites by setting fc = 0.

The Fourier transform P`j(E) reads then:

P`j(E) = −i δ`j

∫ ∞

0

dt e i (E+i 0+)t e−i (ε−∆) t
[

(1 − fc)e
−Φ(t) + fce

−Φ(−t)
]

(6.458)

In order to get closed expressions for the bath thermal averages it is appropriate to introduce a bath

spectral density [129] defined by :

J(ω) =
∑

α

λ2
αδ(ω − Ωα) = J0(

ω

ωc
)se−ω/ωcΘ(ω), (6.459)

where ωc is a cut-off frequency related to the bath memory time τc ∼ ω−1
c . It is easy to show that the

limit ωc → ∞ corresponds to a Markovian bath, i.e. J(t) ∼ J0δ(t). Using this Ansatz, Φ(t) can be

written as:

Φ(t) =

∫ ∞

0

dω
J(ω)

ω2

[

1 − e−i ωt + 2
1 − cosωt

e βω − 1

]

. (6.460)

Although the integral can be performed analytically [129], we consider Φ(t) in some limiting cases where

it is easier to work directly with Eq. (6.460).

6.4.3.2 Limiting cases

We use now the results of the foregoing section to discuss the electronic transport properties of our model

in some limiting cases for which analytic expressions can be derived. We will discuss the mean-field

approximation and the weak-coupling regime in the electron-bath interaction as well as to elaborate on
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Figure 6.37: (Color online) Electronic transmission and corresponding current in the mean-field approximation
for two different temperatures. Parameters: N = 20, J0/ωc = 0.12, t⊥/t|| = 0.5, ΓL/R/t|| = 0.5.

the strong-coupling limit. Farther, the cases of ohmic (s = 1) and superohmic (s = 3) spectral densities

are treated.

(i) Mean-field approximation The mean-field approximation is the simplest one and neglects bath

fluctuations contained in P (E). The MFA can be introduced by writing the phonon operator X as

〈X 〉B + δX in HC-c in Eq. (6.450), i.e. HMF
C-b = −t⊥

∑

j

[

b†jcj 〈X 〉B + H.c.
]

+ O(δX ). As a result a real,

static and temperature dependent term in Eq. (6.455) is found:

G−1(E) = G−1
0 (E) − t2⊥

| 〈X 〉B |2
E − ε+ ∆ + i 0+

1, (6.461)

where |〈X 〉B|
2

= e−2κ(T ) and κ(T ) is given by:

κ(T ) =

∫ ∞

0

dω

ω2
J(ω) coth

ω

2kBT
. (6.462)

The effect of the MF term is thus to scale the bare transversal hopping t⊥ by the exponential temperature

dependent factor e−κ(T ).

In the case of an ohmic bath, s = 1, the integrand in κ(T ) scales as 1/ωp, p = 1, 2 and has thus a

logarithmic divergence at the lower integration limit. Thus, the MF contribution would vanish. In other

words, no gap would exist on this approximation level.

In the superohmic case (s = 3) all integrals are regular. One obtains ∆ =
∫

dω ω−1J(ω) = Γ(s−1)J0 =



244 Green function techniques in the treatement of transport at the molecular scale

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
E/t||

0

0.1

0.2

0.3

t(
E

)

T=10 K
T=100 K

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
V/t||

-0.02

-0.01

0

0.01

0.02

I(
V

)/
(2

e/
h)

Figure 6.38: Electronic transmission and corresponding current in the weak-coupling limit with ohmic dissipation
(s = 1) in the bath. Parameters: N = 20, J0/ωc = 0.2, t⊥/t|| = 0.6, ΓL/R/t|| = 0.5

2J0, with Γ(s) being the Gamma function and κ(T ) reads:

κ(T ) =
2J0

ωc

[

2

(

kBT

ωc

)2

ζH

(

2,
kBT

ωc

)

− 1

]

. (6.463)

ζH(s, z) =
∑∞

n=0(n+ z)−s is the Hurwitz ζ-function, a generalization of the Riemann ζ-function. [131]

It follows from Eq. (17) that κ(T ) behaves like a constant for low temperatures (kBT/ωc < 1),

κ(T ) ∼ J0/ωc, while it scales linear with T in the high-temperature limit (kBT/ωc > 1), κ(T ) ∼ J0/ωc(1+

2kBT/ωc)).

For J0 6= 0 and at zero temperature the hopping integral is roughly reduced to t⊥e−
J0
ωc which is similar

to the renormalization of the hopping in Holstein’s polaron model [132], though here it is t⊥ rather than

t|| the term that is rescaled. At high temperatures t⊥ is further reduced (κ(T ) ∼ T ) so that the gap in the

electronic spectrum finally collapses and the system becomes “metallic”, see Fig. 6.37. An appreciable

temperature dependence can only be observed in the limit J0/ωc < 1; otherwise the gap would collapse

already at zero temperature due to the exponential dependence on J0. We further remark that the MFA

is only valid in this regime (J0/ωc < 1), since for J0/ωc � 1 multiphonon processes in the bath, which

are not considered in the MFA, become increasingly relevant and thus a neglection of bath fluctuations

is not possible.

(ii) Beyond MF: weak-coupling limit As a first step beyond the mean-field approach let’s first

consider the weak-coupling limit in P(E). For J0/ωc < 1 and not too high temperatures (kBT/ωc . 1)

the main contribution to the integral in Eq. (6.460) comes from long times t� ω−1
c . 3 With the change
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of variables z = ωt, Φ(t) can be written as:

Φ(t) = J0ω
−s
c t1−s

∫ ∞

0

dz zs−2e−
z

ωct

×
(

1 − e−i z + 2
1 − cos z

e z βωc
ωct − 1

)

. (6.464)

As far as ωct� βωc this can be simplified to:

Φ(t) ≈ J0ω
−s
c t1−s

∫ ∞

0

dx zs−2e−
z

ωct

×
(

1 − e−i z + 2
βωc

ωct

1 − cos z

z

)

. (6.465)

Since in the long-time limit the low-frequency bath modes are giving the most important contribution

we may expect some qualitative differences in the ohmic and superohmic regimes. For s = 1 we obtain

Φ(t) ∼ π J0

ωc

kBT
ωc

(ωct) which leads to (∆(s = 1) = J0):

G−1(E) = G−1
0 (E) − t2⊥

1

E + J0 + iπ J0

ωc
kBT

1, (6.466)

i.e. there is only a pure imaginary contribution from the bath. For the simple case of N = 1 (a two-

states model) one can easily see that the gap approximately scales as
√
kBT ; thus it grows with increasing

temperature. This is shown in Fig. 6.38, where we also see that the intensity of the transmission resonances

strongly goes down with increasing temperature. The gap enhancement is induced by the suppression of

the transmission peaks of the frontier orbitals, i. e. those closest to the Fermi energy.

For s = 3 and kBT/ωc . 1, Φ(t) takes a nearly temperature independent value proportional to J0/ωc.

As a result the gap is slightly reduced (t⊥ → t⊥e−J0/ωc) but, because of the weak-coupling condition,

the effect is rather small.

From this discussion we can conclude that in the weak-coupling limit ohmic dissipation in the bath induces

an enhancement of the electronic gap while superohmic dissipation does not appreciably affect it. In the

high-temperature limit kBT/ωc > 1 a short-time expansion can be performed which yields similar results

to those of the strong-coupling limit (see next section), [133] so that we do not need to discuss them here.

Note farther that the gap obtained in the weak-coupling limit is an “intrinsic” property of the electronic

system; it is only quantitatively modified by the interaction with the bath degrees of freedom. We thus

trivially expect a strong exponential dependence of t(E = EF), typical of virtual tunneling through a

gap. Indeed, we find t(E = EF) ∼ exp (−β L) with β ∼ 2 − 3 Å−1.

(iii) Beyond MF: strong coupling limit (SCL) In this section we elaborate on the strong-coupling

regime, as defined by the condition J0/ωc > 1. In the SCL the main contribution to the time integral in

Eq. (6.460) arises from short times. Hence a short-time expansion of Φ(t) may already give reasonable
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Figure 6.39: Temperature dependence of the real and imaginary parts of P (E) for N = 20, J0/ωc = 10, t⊥/t|| =
0.4, ΓL/R/t|| = 0.5. With increasing temperature the slope of the real part near E = 0 decreases and the imaginary
part broadens and loses intensity. A similar qualitative dependence on J0 was found (not shown).

results and it allows, additionally, to find an analytical expression for P(E). At t� ω−1
c we find,

Φ(t) ≈ i ∆ t+ (ωct)
2 κ0(T ) (6.467)

P`j(E) = −i δ`j

∫ ∞

0

dt e i (E−ε+i 0+)t e−(ωct)2κ0(T )

= −i δ`j

√
π

2

1

ωc

√

κ0(T )
exp

(

− (E − ε+ i 0+)2

4ω2
cκ0(T )

)

×
(

1 + erf

[

i (E − ε+ i 0+)

2ωc

√

κ0(T )

])

,

κ0(T ) =
1

2ω2
c

∫ ∞

0

dωJ(ω) coth
ω

2kBT
.

result. regimes, since spectral for all values of the exponent Before presenting the results for the

electronic transmission, it is useful to first consider the dependence of the real and imaginary parts of

P(E) on temperature and on the reduced coupling constant J0/ωc. Both functions are shown in Fig. 6.39.

We see that around the Fermi level at E = 0 the real part is approximately linear, ReP (E) ∼ E while

the imaginary part shows a Lorentzian-like behavior. The imaginary part loses intensity and becomes

broadened with increasing temperature or J0, while the slope in the real part decreases when kBT or J0

are increased. If we neglect for the moment the imaginary part (the dissipative influence of the bath), we

can understand the consequences of the real part being nonzero around the Fermi energy, i.e. in the gap

region of the model of Ref. [128]. The solutions of the non-linear equation det|(E−t2⊥ReP (E))1−HC| = 0
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Figure 6.40: Upper panel: t(E) with Im P (E) = 0; the intensity of the resonances on the central narrow band is
strongly dependent on J0/ωc and kBT (not shown). Temperature dependence of t(E) with full inclusion of P (E)
(middle panel) and corresponding current (lower panel) for N = 20, J0/ωc = 5, t⊥/t|| = 0.5, ΓL/R/t|| = 0.2. The
pseudo-gap increases with temperature.

give the new poles of the Green function of the system in presence of the phonon bath. For comparison,

the equation determining the eigenstates without the bath is simply det|(E− t2⊥/E)1−HC| = 0. It is just

the 1/E dependence near E = 0 that induces the appearance of two electronic bands of states separated

by a gap. In our present study, however, ReP (E → 0) has no singular behavior and additional poles of

the Green function may be expected to appear in the low-energy sector. This is indeed the case, as shown

in Fig. 6.40 (upper panel). We find a third band of states around the Fermi energy, which we may call a

polaronic band because it results from the strong interaction between an electron and the bath modes.

The intensity of this band as well as its band width strongly depend on temperature and on J0. When

kBT (or J0) become large enough, these states spread out and eventually merge with the two other side

bands. This would result in a transmission spectrum similar of a gapless system.

This picture is nevertheless not complete since the imaginary component of P (E) has been neglected.

Its inclusion leads to a dramatic modification of the spectrum, as shown in Fig. 6.40 (middle panel). We

now only see two bands separated by a gap which basically resembles the semiconducting-type behavior

of the original model. The origin of this gap or rather pseudo-gap (see below) is however quite different.

It turns out that the imaginary part of P (E), being peaked around E = 0, strongly suppresses the

transmission resonances belonging to the third band. Additionally, the frontier orbitals on the side

bands, i.e. orbitals closest to the gap region, are also strongly damped, this effect becoming stronger with

increasing temperature (ImP (E) broadens). This latter effect has some similarities with the previously

discussed weak-coupling regime. Note, however, that the new electronic manifold around the Fermi

energy does not appear in the weak-coupling regime. We further stress that the density of states around
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Figure 6.41: Upper panel: Arrhenius plot for t(EF ). Parameters: N = 20, t|| = 0.6 eV, t⊥/t|| = 0.2, ΓL/R/t|| =
0.3. Middle and lower panels: Length dependence of t(EF ) at different temperatures for two different strengths
of the electron-bath coupling J0/ωc. The electronic coupling parameters are the same as in the upper panel.

the Fermi level is not exactly zero (hence the term pseudo-gap); the states on the polaronic manifold,

although strongly damped, contribute nevertheless with a finite temperature dependent background to the

transmission. As a result, with increasing temperature, a crossover from “semiconducting” to “metallic”

behavior in the low-voltage region of the I-V characteristics takes place, see Fig. 6.40 (lower panel). The

slope in the I-V plot becomes larger when t⊥ is reduced, since the side bands approach each other and

the effect of ImP (E) is reinforced.

In Fig. 6.41 (top panel) an Arrhenius plot of the transmission at the Fermi energy is shown, which

suggests that activated transport is the physical mechanism for propagation at low energies. Increasing

the coupling to the phonon bath makes the suppression of the polaronic band around E = 0 less effective

(ImP (E ∼ 0) decreases) so that the density of states around this energy becomes larger. Hence the

absolute value of the transmission will also increase. On the other side, increasing t⊥ leads to a reduction

of the transmission at the Fermi level, since the energetic separation of the side bands increases with t⊥.

A controversial issue in transport through molecular wires is the actual length dependence of the elec-

tron transfer rates or correspondingly, of the linear conductance. This is specially critical in the case of

DNA nanowires [[134, 135, 136]]. Different functional dependences have been found in charge transfer ex-

periments ranging from strong exponential behavior related to superexchange mediated electron transfer

[[135]] to algebraic dependences typical of thermal activated hopping [[134, 136]]. As far as transport ex-

periments are concerned, the previously mentioned experiments at the group of N. Tao [127] reported an
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algebraic length dependence of the conductance for poly(GC) oligomers in solution. We have investigated

the length dependence of t(EF ) and found for the strong dissipative regime J0/ωc > 1, an exponential

law for energies close to EF, t(EF) ∼ exp(−γN). At the first sight, this might be not surprising since

a gap in the spectrum does exist. Indeed, in the absence of the bath, i.e. with an intrinsic gap, we get

decay lengths γcoh of the order of 2 Å
−1

. However, as soon as the interaction with the bath is included,

we find values of γ much smaller than expected for virtual tunneling, ranging from 0.15 Å
−1

to 0.4 Å
−1

.

Additionally, γ is strongly dependent on the strength of the electron-bath coupling J0/ωc as well as on

temperature; γ is reduced when J0/ωc or kBT increases, since in both cases the density of states within

the pseudo-gap increases. Remarkably, a further increase of the electron-bath coupling eventually leads

to an algebraic length dependence, see lower panel of Fig. 6.41.

The studies presented in this section indicate that the presence of a complex environment, which

induces decoherence and dissipation, can dramatically modify the electronic response of a nanowire

coupled to electrodes. Electron transport on the low-energy sector of the transmission spectrum is

supported by the formation of (virtual) polaronic states. Though strongly damped, these states manifest

nonetheless with a finite density of states inside the bandgap and mediate thermally activated transport.
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6.5 Conclusions and Perspectives

In this chapter we have reviewed the method of nonequilibrium Green functions and few selected applica-

tions to problems related with charge transport at the molecular scale. Hereby we have only focused on

minimal model Hamiltonian formulations which build a very appropriate starting point to illustrate the

power and range of validity of such techniques. We have showed how this approach can be used to deal

with a variety of physical systems, covering both noninteracting and interacting cases. Thus, so different

issues as coherent transport, Coulomb blockade phenomena, charge-vibron interaction, coupling to dissi-

pative environments, and the Kondo effect (not addressed in this review) can be in principle treated on the

same footing. Specially, the existence of well-developed diagrammatic techniques allows for a systematic

treatment of interactions in nanoscale quantum systems. For the sake of space, we did not deal with appli-

cations of NEGF techniques to spin-dependent transport [137, 138, 45], a field that has been increasingly

attracting the attention of the physical community in the past years due to its potential applications in

quantum information theory and quantum computation [139, 140]. For the same reason, the implementa-

tion of NEGF into first-principle based approaches was not discussed neither [43, 142, 143, 23, 39, 35, 141].

This is nevertheless a crucial methodological issue, since system-specific and realistic information about

molecule-metal contact details, charge transfer effects, modifications of the molecular electronic structure

and configuration upon contacting, the electrostatic potential distribution in a device, etc can only be

obtained via a full ab initio description of transport. For charge transport through noninteracting systems

this has been accomplished some years ago by combining NEGF with DFT methods [143, 39, 141, 41].

The inclusion of interactions, however, represents a much stronger challenge and has been mainly carried

out, within the self-consistent Born-approximation, for the case of tunneling charges coupling to vibra-

tional excitations in the molecular region [23, 144, 40]. Much harder and till the present not achieved

at all is the inclusion of electronic correlation effects -responsible for many-particle effects like Coulomb

blockade or the Kondo effect- in a non-equilibrium transport situation. DFT-based techniques, being

essentially mean-field theories, cannot deal in a straightforward way with such problems and have to be

improved, e.g. within the LDA+U approaches [145]. For the case of equilibrium transport, a general-

ization of the Landauer formula including correlations has been recently formulated [43] as well as first

attempts to go beyond the linear response regime [44]; for strong out-of-equilibrium situations this will

be, in our view, one of the most demanding issues that the theoretical “transport” community will be

facing in the coming years.
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Chapter 7

Numerical methods for the

calculation of shot noise in nanoscale

devices.

M. Macucci

Dipartimento di Ingegneria dell’Informazione,

Università di Pisa,

Via Caruso 16, I-56122 Pisa, Italy

7.1 Introduction

Shot noise was first analyzed by Schottky[1], who explained its origin on the basis of the discreteness of

charge carriers and the variance associated with the Poisson process that results for independent charges

crossing the device. In the case of independent carriers, i.e. device traversal events that are completely

uncorrelated, the noise current power spectral density is proportional to the average value of the current

(SI = 2qI) through twice the electron charge q or, in general, the charge associated with the specific

carrier. This is a direct result of the fact that in a Poisson process the variance equals the average value[1].

Indeed, recent experiments have demonstrated that shot noise in superconductors has a power spectral

density 4qI[2], since in such a case current is carried by Cooper pairs, and that in the fractional quantum

Hall regime it is proportional to a fractional charge[3].

Schottky’s theorem breaks down in the presence of correlations between carriers, which in general

originate form Coulomb interaction or from the Pauli exclusion principle. The action of such correlations

leads to a reduction of the shot noise power spectral density if the act is such a way as to make the

charge flow more “regular,” i.e. they lead to an “anti-bunching” effect, or to an enhancement, when more
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than one carrier tend to be “bunched” together. A detailed discussion of such effects can be found in the

comprehensive review by Blanter and Büttiker[4], from which the usefulness of shot noise as a probe for

correlations in mesoscopic systems and nanoelectronic devices is apparent.

In this chapter we shall discuss approaches for modeling shot noise in nanoscale devices on the basis

of the formalism developed by Büttiker and with a detailed discussion of the techniques to be used in the

presence of a finite temperature and of finite applied bias. Our main focus will be on the numerical ap-

proaches and on their optimization for dealing with structures in which a very large number of transverse

modes propagate. A few examples will also be presented, with the calculation of the shot noise power

spectral density in diffusive wires and in mesoscopic cavities.

7.2 The Büttiker formalism

While in a classical device shot noise originates substantially from the injection of charges with a thermal

velocity distribution from the contacts, so that a continuous transition between thermal and shot noise

can be observed as a function of the applied bias and of the ratio of the device length to the mean free

path [5], in quantum devices there is a further source of randomness originating from the probabilistic

nature of the transmission.

Let us first discuss the case of shot noise in a mesoscopic device in the limit of zero temperature. In

this condition there is no thermally generated randomness in the emission from the reservoirs, and, in

the case of perfect transmission through the device, shot noise is completely suppressed. This has been

verified experimentally for the case of the conductance plateaus of a quantum point contacts [6] and, from

a semiclassical point of view, is justified by Thomas and Landauer [7]. Kluhs [8] and Lesovik [9] provided

the first insight into the problem of evaluating the low-frequency shot noise current power spectral density

for a device with nonunitary transmission. They considered the particular case in which the transmission

matrix is diagonal, therefore each i−th impinging mode is transmitted into a single corresponding mode

at the output, with a transmission probability Ti. In such a case, the shot noise power spectral density

is given by

SI = 4
q3

h
|V |

∑

i

Ti (1 − Ti) , (7.1)

where h is Planck’s constant and V is the applied voltage. This result can be easily explained on the

basis of the analysis of a stochastic process in which multiple attempts are performed (in the specific case

multiple attempts to cross the barrier) and can be understood also with relationship to the classical case

of partition noise [10].

The issue becomes somewhat more complex in the case of a transmission matrix that is not diag-

onal, when there is interaction between the different modes and therefore the simple picture described

above does not apply any more. The general case is treated by Büttiker in Ref. [11]: starting from the

transmission and reflection matrices t and r, the noise current power spectral density can be expressed

as

SI = 4
q2

h
|qV |Tr

(

r†rt†t
)

, (7.2)
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(notice that there is a factor 2 difference with respect to Ref. [11], because here we include spin degener-

acy). Expanding the trace, we obtain

SI = 4
q2

h
|qV |

∑

i

∑

m

(

∑

k

r∗kirkm

)(

∑

h

t∗hmthi

)

. (7.3)

Due to the unitarity of the scattering matrix, we could also write

SI = 4
q2

h
|qV |Tr

[

t†t(I − t†t)
]

, (7.4)

and, as a result of the invariance properties of the trace of a matrix for rotations, we get

SI = 4
q2

h
|qV |

∑

i

Ti(1 − Ti), (7.5)

where Ti is now the i−th eigenvector of the matrix t†t.

In many cases we are interested in the o called Fano factor, i.e. the ratio of the shot noise current

power spectral density SI to that which would be predicted by Schottky’s for the given average value

of the current (SIS = 2qI). The expression of the average current I can be easily obtained from the

Landauer-Büttiker formula for conductance:

G = 2
q2

h

∑

ij

|tij |2 , (7.6)

which, if the eigenvalues Ti of the matrix t†t have been computed, can also be written as

G = 2
q2

h

∑

i

Ti . (7.7)

Thus the average value of the current reads

|I| = G|V | = 2
q2

h
|V |
∑

i

Ti , (7.8)

and thus the expression for the Fano factor γ is

γ =
SI

SIS
=

4 q2

h |qV |∑i Ti(1 − Ti)

4q q2

h |V |∑i Ti

=

∑

i Ti(1 − Ti)
∑

i Ti
. (7.9)

In the case in which, at least in one section of the device, there are few propagating modes, we must

take into account the presence of fluctuations, which are of the order of one conductance quantum (and

therefore become quite significant if only a few modes are propagating). While in the presence of many

modes such fluctuations are effectively averaged over modes, for devices with low conductance the only

averaging that takes place is the one over energy as a result of the presence of a finite temperature.
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Particular care must be exercised when reproducing such averaging in simulations. First of all, let us

state that in most experiments a single device is measured, and therefore in the experimental data there

is no ensemble average: this implies that also in the numerical simulations a single device must be

considered and not an ensemble of them with small variations (for example with slightly different defect

distributions).

While in many instances, when evaluating conductance, a situation with infinitesimal applied bias

is considered and the effect of a finite temperature is consistently included by energy averaging of the

transmission eigenvalues, using the derivative of the Fermi function as a weighting factor, in the case of

shot noise we are in general in the opposite regime. Indeed, in order to make shot noise prevalent with

respect to thermal noise, a DC bias of a least about 10kT/q (where k is the Boltzmann constant and T

is the absolute temperature) must be applied. Usually this is also the maximum applied bias, to avoid

significant heating of the electron gas, which would, in turn, raise the thermal noise. If the applied bias

is of the order of 10kT/q, the Fermi functions expressing the occupancy of the states in the source and

drain reservoirs vary from 0 to 1 over an interval much smaller than the chemical potential difference

between the reservoirs, thus, for the purposes of our calculation, they can be approximated with step

functions. With this approximation, energy averaging becomes very simple, because it is just a uniform

averaging over the chemical potential of the source and that of the drain.

An additional note of caution must be added about the order in which averaging of the numerator

and the denominator of Eq.(7.9) is performed. The correct procedure consists in first computing the

average of the numerator and of the denominator and then taking the ratio of the averages [12]. This is

consistent with the experimental procedure, in which the noise current power spectral density and the

current are separately measured and averaged. Indeed, a different and incorrect result would be obtained

if the averaging were performed after taking the ratio of SIS and SI for each energy value.

Summarizing, for the numerical evaluation of the Fano factor for a given device structure it is necessary

to compute the transmission matrix t for a number of energy values in the interval between the chemical

potential of the source reservoir and that of the drain reservoir, then the eigenvalues Ti of the matrix t†t

are computed for each energy value and are plugged into Eq.(7.9), which is then averaged according to

the above discussed procedure. The evaluation of the transmission matrix can be performed with one

of the many available numerical techniques, such as recursive Green’s functions [13, 14, 15], recursive

scattering matrix [16, 17, 18], mode matching [19].

7.3 Calculation of shot noise in diffusive wires

In 1992 Beenakker and Büttiker made the remarkable prediction, based on random matrix theory, that

the shot noise current power spectral density in diffusive conductors is suppressed down to 1/3 of the

value that would expected from Schottky’s theorem. Such a prediction was later experimentally con-

firmed, as far as disordered metal wires are concerned, by Henny et al. [20], while the only experiment

involving a semiconductor structure [21] did not lead to really conclusive results, exhibiting a shot noise

suppression that depended on the bias voltage applied to the depletion gates used to define the wire
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Figure 7.1: Fano factor as a function of the Fermi energy for a disordered quantum wire. The top plot is for a
7.72 µm wire with 600 square 25 × 25 nm2 obstacles, the middle plot for a wire 3.85 µm long with 600 square
25 × 25 nm2 obstacles and the bottom plot for a a 7.72 µm wire, with 600 square 12.5 × 12.5 µm obstacles.

in a 2-dimensional electron gas created by modulation doping in a gallium arsenide/aluminum gallium

arsenide heterostructure.

A better understanding into the reasons for the difficulty in achieving the diffusive regime in semi-

conductor nanostructures can be achieved through numerical simulation. A first, simplified approach

consists in modeling the scattering by means of randomly located hard-wall obstacles [22] located within

a 2-dimensional model quantum wire, and computing the transmission matrix with one of the standard

approaches, for example recursive Green’s functions (which is simpler to apply in the case of hard walls

than other approaches that require a relatively complex check at each interface [19]). Once the transmis-

sion matrix is available, the Fano factor can be quickly obtained with the previously described procedure.

Results from Ref. [22] are shown in Fig. 7.1, where the Fano factor is reported as a function of the Fermi

energy for three wires 5µm wide: the traces are vertically shifted by one unit to make the graph more

readable. The dashed lines represent the 1/3 diffusive limit; the top plot represents the Fano factor for

a wire that is 7.72µm long with 600 square 25 × 25 nm2 hard-wall obstacles; the plot in the middle for

a for a wire 3.85µm long with 600 square 25 × 25 nm2 hard-wall obstacles; the plot at the bottom for

a wire 7.72µm long with 600 square 12.5 × 12.5 nm2 hard-wall obstacles. It is apparent that, as soon

as the Fermi energy is large enough to allow a relatively large number of propagating modes (about

50), the Fano factor converges exactly to the diffusive limit of 1/3. In such a situation the inequality

l < L < Nl [23] is verified, where l is the elastic mean free path, N is the number of propagating modes,

and L is the length of the wire. It turns out that the diffusive regime is achieved as soon as, with L� l,

Nl ≈ 3L. In a real semiconductor, however, elastic scattering is mainly due to the random potential asso-

ciated with dopants, which, particularly for a 2-dimensional electron gas obtained by modulation doping,
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are not located where transport actually takes place. Therefore the action of dopant atoms cannot be

realistically represented with a hard-wall model, and a detailed description would require the solution

of the Poisson equation on an extremely fine grid, since the decay of the potential due to each donor is

quite sharp. Such a grid would be prohibitively large for problems of practical interest, since a domain

of a few square microns should be covered with a step size of 1-2 nm. An approximate approach has

been developed [24], based on an initial solution of the Poisson equation computed assuming that the

charge density due to the donors is uniform, followed by the addition of the contribution of the discrete

donors (whose positions are generated with a uniform random distribution), which is computed with a

semi-analytical model that takes into account screening from the carriers in the 2DEG. In order to avoid

double counting of the average component, the contribution of the donors is added to the solution of the

Poisson equation only after removing the average value.

The transmission matrix of the device and, therefore, the shot noise behavior are then computed with

the recursive Green’s function technique, adopting a discretization fine enough to resolve the details of the

potential fluctuations. The case of a quantum wire defined in GaAs/AlGaAs heterostructure by means of

depletion gates 1 µm long and with a 400 nm gap[24] yields the results reported in Fig. 7.2(a): the Fano

factor varies as a function of the voltage applied to the gates used to define the quantum wire, but does

not stabilize at 1/3, i.e. in a diffusive regime. This result is consistent with the existing experimental data

by Liefrink et al. [21], in which a similar dependence of the Fano factor on gate voltage is observed. If the

calculation is repeated increasing the length of the wire to 3 µm [Fig. 7.2(b)] or 5 µm [Fig. 7.2(c)], the

Fano factor rises, but no definite plateau at 1/3 appears. These data can be interpreted as evidence that,

as a result of the limited amplitude of the potential fluctuations induced by the donors with respect to the

Fermi energy, a diffusive transport condition cannot be easily achieved in a semiconductor nanostructure.

Mesoscopic cavities (ofter referred to as “chaotic cavities” are relatively large (a few microns by a few

microns) structures delimited, however by narrow constrictions with a width of the order of a few tens

of nanometers. A sketch of a mesoscopic cavity is represented in Fig. 7.3: if the constriction are narrow

enough, the region inside the cavity behaves as a quasi-reservoir, which leads to quite a peculiar behavior

in terms of conductance and noise. In a seminal paper from 1993 Jalabert et al. [25] predicted, on the basis

of random matrix theory, that a symmetric cavity would exhibit a suppression by a factor 1/4 with respect

to full shot noise. Such a result was later also justified in semiclassical terms [26] and found experimental

confirmation [27]. Although the basic effect of shot noise suppression in a mesoscopic cavity is well

established, there has been much debate about its origin, with several authors that were attributing it to

the classically chaotic shape of the cavity or even to scattering off a disordered potential. In this respect,

numerical simulations have played an important role, allowing the detailed investigation of cavities with

various shapes. In particular, a rectangular (and thereby classically regular cavity) has been shown [12]

to yield the very same Fano factor behavior as predicted for cavities with a chaotic shape. In particular,

the dependence of the Fano factor on the number of transverse modes propagating through the apertures

has been computed for a rectangular cavity 8 µm wide and 5 µm long, exhibiting a behavior [12] that is

in good agreement with experimental data [28]. Results are presented in Fig. 7.4, where circles indicate

the numerical results and squares correspond to the experimental data: while for few propagating modes
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Figure 7.2: Fano factor in a semiconductor quantum wire as a function of the voltage applied to the depletion
gates defining it. The top plot is for a wire defined by 1 µm long gates with a gap of 400 nm, the middle and the
bottom plots are for a wires defined by gates 3 µm and 5 µm long, respectively.
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Figure 7.3: Sketch of a mesoscopic cavity, defined by constriction with a width WC .



266 Numerical methods for the calculation of shot noise in nanoscale devices.

Number of propagating modes

Fa
no

 fa
ct

or

 1

 0.8

 0.6

 0.4

 0.2

 0
 0  5  15  20  25  30  35  40  45 10

Figure 7.4: Fano factor in a symmetric mesoscopic cavity as a function of the number of modes propagating in
the constrictions: the circles indicate the numerical results and the squares represent the experimental values.

the Fano factor is about 1/4, as the constrictions are widened, the Fano factor decreases, finally vanishing

when the width of the constrictions equals that of the cavity (as expected, since in this case we have

a quantum wire with integer transmission). Analogous results have been obtained for a stadium cavity

(a classically chaotic shape): the actual origin of the observed noise behavior lies in the diffraction of

electron waves at the apertures. Indeed, in semiclassical terms diffraction is equivalent to generating

many different trajectories from a single incoming one, which leads to chaotic behavior. Thus, there is

no need for classical chaotic properties, since the origin of the chaotic motion is purely quantum, being

a result of diffraction. Further confirmation of the irrelevance of the cavity shape has been obtained by

Rotter et al. [29], who have compared the Fano factor and the transmission eigenvalue distribution [30]

for a few different cavity shapes, such as a stadium, a semicircle, and a rectangle, without finding any

significant difference.

Another relevant issue on which modeling has provided a useful input is represented by the effect of

an orthogonal magnetic field on the Fano factor for a mesoscopic cavity. Experiments [28] have shown

a decrease of the Fano factor with increasing magnetic field and initial explanations of the effect were

based on a very simple semiclassical model attributing the shot noise suppression to a reduced portion of

the cavity which is explored in the presence of a magnetic field, as a consequence of gradual edge state

formation. Consequently, they obtain that the relevant parameter would be represented by the ratio

of the cyclotron radius to the cavity size. However, numerical simulations performed with a recursive

scattering matrix technique [12] for rectangular cavities of different sizes or with different aperture widths

have clearly shown that the relevant quantity is the ratio of the cyclotron radius to the aperture width.

If such a ratio is large, electrons will be repeatedly scattered by the constrictions and a behavior similar

to that in the absence of a magnetic field will be observed; if, instead, the cyclotron radius will become
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Figure 7.5: Semiclassical representation of edge state propagation regime, in which, as a result of the cyclotron
diameter being less than the constriction width, almost no scattering occurs.

comparable to the aperture width or smaller, it will be more and more likely that electrons will follow

skipping orbits along the walls without undergoing diffraction (Fig. 7.5). As we get channels with unitary

transmission probability, shot noise will drop to zero, as expected. This is a typical example in which

collection of experimental data on a variety of structures is very time consuming and it is not possible

to have a direct control on all experimental parameters. On the other hand, the analytical models

contain significant approximations and are based on assumptions that are not fully justified. Therefore

the availability of numerical models becomes essential for the validation of the approximate analytical

approaches. In Fig. 7.6(a) we report the dependence of the Fano factor on the orthogonal magnetic

field, for a few values of the constriction widths. It is possible to notice that the experimental results,

indicated with diamonds, are rather close to the curve for 60 nm apertures. In Fig. 7.6(b) we report

the same data with a different representation: we plot the Fano factor as a function of the ratio of the

cyclotron diameter DC (twice the cyclotron radius) to the constriction width WC . It is apparent that

the different curves, corresponding to different constriction widths, are superimposed, which confirms the

interpretation based on the interplay between the cyclotron radius and the constriction width. Such an

interpretation is further reinforced by another result from numerical calculations: while the semianalytical

model of Ref. [28] would imply that, in the presence of a magnetic field, there is a strong dependence of

the Fano factor on the length (and also the width) of the cavity, numeric results do not exhibit any such

dependence, supporting the conclusion that the noise behavior depends just on the ratio of the cyclotron

radius to the constriction width. In Fig. 7.7 we report the Fano factor as a function of the cavity length

and width, for given values of the magnetic field: it is apparent that there is no significant dependence

on either quantity. Therefore the techniques for the calculation of the low-frequency shot noise power

spectral density that we have described in this chapter can be fruitfully applied to a variety of problems in
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mesoscopic physics, providing an efficient tool for the exploration of the parameter space, an exploration

that would be extremely difficult and time-consuming to achieve with a direct experimental investigation.

The examples we have discussed demonstrate the good predictive capabilities of numerical models for

shot noise and how they can be applied to the interpretation of experimental results as well as to the

validation of theoretical conjectures.
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[4] Ya. M. Blanter and m. Büttiker, Phys. Rep. 336, 1 (2000).

[5] C. J. Stanton, J. W. Wilkins, Physica 134B, 255 (1985).

[6] A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 76, 2778 (1996).

[7] T. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).

[8] V. A. Khlus, Sov. Phys. JETP 66, 1243 (1987).

[9] G. B. Lesovik, JETP Lett. 49, 592 (1989).

[10] A. van der Ziel, Noise in Solid State Devices and Circuits (Wiley-Interscience, 1986), p. 18.
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Abstract. For gated circular quantum dots, we show that a suitably defined two-dimensional Thomas-

Fermi model is in excellent agreement with more elaborate Poisson-Schrödinger calculations. Further we

show that using the Shikin density profile one can derive accurate semi-analytic approximations for the

solutions of the Thomas-Fermi equation.

8.1 Introduction

Quantum dots can be formed by applying a negative potential to metallic gates deposited on the surface

of a GaAs heterojunction. When the applied potential is sufficiently negative, a 3D dot forms near the

plane of the GaAs/AlGaAs junction. In this paper we describe a sequence of models for the properties

of such dots. For simplicity we will restrict our discussion to dots with axial symmetry, formed by a gate

that covers the entire heterojunction surface except for a circular hole. Although usually the gates cover

only a portion of the exposed surface, our assumed gate geometry is close to experimental conditions,

because it can be checked (from the expressions given below, eqs. 8.1-8.3), that by suitably readjusting

the applied voltage, the confining potential of our gate can be made similar to that of an annular gate. We

describe the equilibrium properties of this system of electrons, using conventional methods that we have
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previously applied to linear split-gate devices [1, 2]. We model the electrons in the dot in the envelope

function approximation, so that the hamiltonian of the many electron system will include three kinds of

terms: i) the kinetic energy of each electron, estimated under the assumption that in the semiconductor

their effective mass, m∗, is constant; ii) the external electrostatic potentials due to the gate and the donor

layer, to be written in eqs. 8.3 and 8.4 below, and iii) the inter-electronic potential written in eq. 8.5.

In addition we assume that the dot is in thermodynamic equilibrium with the electrons trapped in the

surface states in the ungated part of the surface, so that the Fermi level is the same at the surface and

in the dot, being pinned by the surface states.

We first consider the Hartree approximation to the dot ground state, and determine it by iterative

solution of the 3D Poisson and Schrödinger equations. This model requires a sizeable numerical effort

and does not easily connect the predicted properties of the dot to the physical parameters of the device.

Therefore, to have a better understanding of the physics of the dot, we introduce successive approxi-

mations which lead to a much simpler model: that of a strictly two dimensional dot described in the

Thomas-Fermi approximation. We study the quantitative effect of these approximations and show that a

good qualitative understanding of the properties of the dot can still be achieved with this much simpler

model. By introducing suitable expansions and a parabolic approximation for the confining potential we

derive analytic results for the radial charge distribution and for the inter-electronic potential. In zeroth

order these turn out to be very similar to those of Shikin et al. [3, 4] for a schematic classical model of a

dot. We can therefore extend the simple analytic approximations found by these authors and show how

they apply to a more realistic model for the dot.

8.2 Microscopic models

The heterojunction that we take as reference is the one already studied by us for the case of a linear

split-gate device. It is similar to that originally introduced by Laux et al. [5], [6], [7] for these devices

and consists of successive planar layers of a) a GaAs substrate, that we assume to be free of acceptors

and behaving as infinitely thick, b) a spacer layer of undoped AlGaAs, of thickness s, c) a donor layer of

AlGaAs, of thickness d and uniformly n-doped with a donor concentration ρd, that we assume throughout

this paper to be fully ionized; and d) an undoped cap layer of GaAs of thickness c. The metallic gate is

deposited on top of that. We choose the center of coordinates at the center of the circular hole in the gate,

with the z axis orthogonal to the surface, and denote by ~r, ~s distances to that axis in a z = const. plane

or distances between points in that same plane. The numerical values for the geometrical parameters

introduced above, and for the dielectric constants, effective masses, etc, are the same as in ref.[1].

Following the methods of [1], we construct the total electrostatic potential acting on the electrons in

the conduction band by adding the contributions from a) the gates, b) the ionized donor layer, and c)

the electrons in the dot. The potential due to a metallic gate with a circular hole can be easily derived
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from expressions given in Sect. 3.6 of [8] for a point located at a distance ~r from the z axis:

eVg(~r, z) =
1

2π

∫

d~s eVg(~s, 0)
|z|

(z2 + |~r − ~s|2)3/2
(8.1)

and using the boundary condition:

eVg(~s, 0) = eVg Θ(s− S0) , (8.2)

(Dirichlet b.c. at the exposed surface, consistent with the assumed Fermi level pinning ), one finds for

z > 0:

eVg(r, z) = eVg
2

π
z

∫ ∞

S0

s ds E

(

4rs

z2 + (r + s)2

)

1

z2 + (r − s)2
1

(z2 + (r + s)2)1/2
. (8.3)

Here E(k2) is the complete elliptic integral of the second kind as defined in [9]. To this one must add the

electrostatic potential due to the donor layer, including the corresponding mirror term which maintains

the boundary condition at the surface. As in [1], in the substrate and spacer layers this contribution

reduces to a constant additive term:

eVd(z ≥ z2) = −e
2

ε
ρd d(c+

d

2
) . (8.4)

Finally the third contribution is the potential of the Coulomb interaction between the electrons in the

dot. Including the mirror terms it is:

eVe(~r, z;~r′, z′) =
e2

εr

[

1
√

|~r − ~r′|2 + (z − z′)2

− 1
√

|~r − ~r′|2 + (z + z′)2

]

(8.5)

Appropriate band offsets in the AlGaAs layers are also added. For brevity we omit them in the expressions

written below. Choosing the Fermi level as the origin of energies and denoting by eVs the binding energy

of the surface states with respect to the conduction band edge, the latter will be located at:

eVg+d(r, z) = eVs + eVg(r, z) + eVd(z) . (8.6)

We write the hamiltonian for N electrons in the dot as:

H =

N
∑

i=1

(

p̂2
i

2m∗
+ eVg+d(ri, zi)

)

+

N
∑

i<j=1

eVe(~ri, zi;~rj , zj) , (8.7)
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which we will solve in the Hartree approximation.

8.2.1 3D Hartree approximation

We take a trial wave function for the many electron system of the form:

Ψ(~r1, z1; ....;~rN , zN ) =

N
∏

i=1

ψi(~ri, zi) (8.8)

and minimize the trial energy under constraints that guarantee orthonormality of the ψi. The value of N

is chosen to guarantee equilibrium with the surface states, i.e, so that all single particle states of negative

energy are occupied. Imposing the variational condition one finds:

[

p̂2
i

2m∗
+ eVg+d(ri, zi) + UH(~ri, zi)

]

ψi = εiψi(~ri, zi)

ET =

N
∑

i=1

εi −
1

2
< Ψ|UH |Ψ > (8.9)

where the Hartree potential is given by:

UH(~r, z) =

∫

d~r′dz′ eVe(~r, z;~r′, z′) ρ(~r′, z′) (8.10)

For an even number of electrons there is a solution with axial symmetry. For it,

ρ(~r, z) = ρ(r, z) (8.11)

and:

UH(~r, z) = UH(r, z) . (8.12)

Therefore the solutions of eq. 8.9 take the form:

ψnl(~r, z) =
unl(r, z)√

r

eilφ

2π
, (8.13)

where the index i corresponds to the quantum numbers n, `, and we have omitted for simplicity the spin

component of the wavefunction. Furthermore, eq. 8.9 becomes a two-dimensional Schrödinger equation:

− ~
2

2m∗

(

∂2

∂r2
+

∂2

∂z2

)

unl(r, z)+

(

eVg+d(r, z) + UH(r, z) +
~

2

2m∗
l2 − 1

4

r2

)

unl =

εnlunl(r, z) . (8.14)
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8.2.2 Factorization ansatz

Guided by the success of a similar ansatz in the description of the electron wavefunctions in linear wires

we employ it here for dots. This will be the first step towards providing quantitative support to the

conventional models that treat this system of electrons as a strictly two-dimensional confined gas.

We start by introducing the following approximation to the two potential terms in the above Schrödinger

equation, eq. 8.9:

eVg+d(r, z) + UH(~r, z) =

= eVg+d(0, z) + e∆Vg+d(r, z) + UH(~r, z)

' eVg+d(0, z) + ∆U c(r) + UH(~r) (8.15)

where the external confining, ∆U c, and two-dimensional Hartree, ŪH , potentials are defined as:

∆U c(r) =

∫

dzA2(z)(eVg+d(r, z) − eVg+d(0, z))

UH(~r) =

∫

dz A2(z)UH(~r, z) (8.16)

with a weight function A2(z) to be specified below. Substituting these approximations in the Schrödinger

equation, 8.9, have:
[

p̂2

2m∗
+ eVg+d(0, z) + ∆U c(r) + UH(~r)

]

ψ
(a)
i = ε

(a)
i ψ

(a)
i (8.17)

whose solutions are separable:

ψ
(a)
i (~r, z) = A(z)φi(~r) , (8.18)

with separately normalized A(z) and φi, which satisfy corresponding Schrödinger equations with eigen-

values Ez and ei:

[

p̂2
z

2m∗
+ eVg+d(0, z)

]

A(z) = EzA(z) (8.19)

[

p̂2
⊥

2m∗
+ ∆U c(r) + UH(~r)

]

φi(~r) = eiφi(~r) (8.20)

Note that we have chosen the previously unspecified weight function A(z) to be the common longitudinal

component of the wavefunctions in 8.18. This guarantees consistency, within this approximation, with

the 3D expressions for expectation values of the potential energy. We then have:

ε
(a)
i = Ez + ei

E
(a)
T = NEz +

N
∑

i=1

ei − 1

2

n
∑

i=1

< φi|UH |φi >

= NEz +
n
∑

i=1

< φi |
p̂2
⊥

2m∗
+ ∆U c +

1

2
UH |φi > (8.21)
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Figure 8.1: Energies of single electron levels. Q = 54, corresponding to V0 = −1.27 eV and S0 = 210 nm.

The numerical process starts by constructing eVg+d(0, z) and solving the Schrödinger eq. for A(z).

After that the weight function is fixed and one has to solve self-consistently the two-dimensional Hartree

problem, constructing the corresponding potentials from eqs. 8.16, and solving the Schrödinger equation

8.20 for the φi(~r), with i = 1, ...N .

8.2.3 Results and discussion

For definiteness we present results for a dot containing 54 electrons, which is large enough that the Hartree

approximation should be fairly reliable. In addition the semiclassical models to be described later are

also expected to work for a large number of particles. In figure 8.1 we show the electron level energies as

a function of angular momentum. (Remember that in our convention the Fermi level is located at zero

energy.) One can see three families of levels (n = 0, 1 and 2) ranging from ` = 0 to ` = 6. Given the

apparent arbitrariness of the factorization ansatz it is surprising that the agreement between the exact

(labelled 3 D) and the approximate (labelled 2+1 D) energies is so good. For later discussion, we note

also that Ez = −0.104 eV for this configuration, so that the effective Fermi level for the 2D levels ei is

located at E
(2D)
F = −Ez, rather than at zero energy.

In figure 8.2 we show the electron density ρ(r, z) of the Hartree approximation. The dot thickness along

the z axis is fairly large, of the order of ten nanometers, and in this direction the variation of ρ(r, z)

is rather smooth. Radially, the density shows oscillations due to filling of the various levels. This is

examined in further detail in figure 8.3 where we have plotted:

σH(r) ≡
∫ ∞

−∞

ρ(r, z) dz. (8.22)
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Figure 8.2: Electron density ρ(r, z) computed with the 3D model. Q = 54, corresponding to V0 = −1.27 eV and
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and the corresponding quantity in the factorized approximation, which then reduces to

σ
(a)
H (r) =

∑

i

|φi(r)|2 . (8.23)

Again, the agreement between the Hartree (3D) and the factorized densities is very good. We also show

the individual contributions of levels with different `. Clearly, the inner oscillations in σH(r) are a quantal

effect due to the contributions from different angular momenta being peaked at different r, as expected.

At the surface practically all ` contribute, giving a smooth decrease that cannot be attributed to any

single state or subset of them.

Figure 8.4 shows the Hartree and confinement potentials. One sees that the confinement potential is

nearly parabolic, and that the Hartree potential is also nearly so for the values of r corresponding to

the area occupied by the dot (r ≤ 100 nm.) The sum of the two is practically constant in this range of

r. This will be later used to introduce the classical models of Shikin et al. Finally, by performing the

corresponding integrals one finds: Ekinetic = 0.189 eV, Econf = 1.338 eV, Ecoul = 1.949 eV, which add

up to a total of Etot = 3.476 eV. Note the smallness of the kinetic energy.

Figure 8.4 has the clue to understanding why the factorization ansatz is so accurate: the total potential

seen by the electrons is almost flat inside the dot and rises sharply outside it. A similar plot of the potential

obtained from the exact “3D” calculation, eVg+d(r, z) + UH(r, z) shows a substantial z dependence, but

again it is almost independent of r inside the dot. As is well known, in the limit of cylindrical infinitely

sharp walls, and a z dependent potential inside, the solutions of the single electron Schödinger equation

are trivially factorable and in the x, y plane they are Bessel functions. Therefore, to the extent that the

rise of the potential outside the dot region is sufficiently sharp, we can expect the factorization ansatz to
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be a good approximation. Similarly, for a rectangular dot of sides wx x wy and infinitely sharp walls, with

a potential inside that depends only on z, the exact solutions of the single electron Schrödinger equation

are factorable in the form ψn,m(x, y, z) = N sin(nπx/wx) sin(mπy/wy) A(z). Thus we can expect the

factorization ansatz to be reliable for dots that i) contain a large number of electrons, so that the total

potential inside the region occupied by the dot is fairly independent of x and y, and ii) the potential has

a sharp rise at the boundaries of the dot. Later, when we discuss the classical models of dots, we will

return to the reasons why the total 2D potential shown in figure 8.4 has to be almost constant in the dot

region.

8.3 Semiclassical approximations: Thomas-Fermi

When the number of electrons in the dot is rather large, a Thomas-Fermi model would seem to be

appropriate if one is more interested in the global properties of the system, like its charging energy and

capacitance, rather than in the detail of individual electron energies and wavefunctions. Besides requiring

much less numerical effort (than solving the Schrödinger equations for all the φi), this simpler model will

allow us to obtain several accurate analytic approximations that clarify the role of the different physical

parameters of the system.

8.3.1 The 2D Thomas-Fermi model

We will now replace the two-dimensional density constructed from the solutions of eq. 8.20 by its

circular symmetric Thomas-Fermi approximation, σH(r) → σTF (r). By definition, it is determined from

a variational condition on a suitably simplified expression for the total energy. Starting from eq. 8.21 we

write:

ET = NEz + Ek + Ec + Ee (8.24)

with:

N =

∫

σTF (r) d~r

Ek =
~

2

2m∗
π

∫

σ2
TF (r) d~r

Ec =

∫

∆U c(r) σTF (r) d~r

Ee =
e2

2εr

∫

(V(|~r − ~r′|) + Vm(|~r − ~r′|))σTF (r)

. σTF (r′) d~r d~r′ , (8.25)

where we have used the well known expression for the kinetic energy of a 2D Thomas-Fermi gas, and

εr

e2
V(r) ≡

∫ ∫

A2(z)A2(z′)
dz dz′

√

(z − z′)2 + r2
, (8.26)
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and a similar expression for the mirror term. Defining now:

E(µ) = ET − µN (8.27)

with µ a Lagrange multiplier to fix the number of electrons, the variational condition leads to:

µ = Ez +
~

2

m∗
πσTF (r) + ∆U c(r) + UH,TF (r) (8.28)

where:

UH,TF (r) =
e2

εr

∫

(V(|~r − ~r′|) + Vm(|~r − ~r′|))σTF (r′) d~r′ , (8.29)

This pair of equations defines the iterative Thomas-Fermi approach: the process is started by solving the

Schrödinger eq. 8.19 for A(z) to determine Ez. Then ∆U c given in eq. 8.16, and V, Vm are computed.

The choice previously made for the origin of energies fixes µ = 0. By iteratively solving eqs. 8.28 and

8.29 we determine σTF (and N), starting from an appropriate initial guess.

Remarks:

i) note that we do take into account the longitudinal energy Ez in a realistic way, and therefore the 2D

Fermi level of the dot is not 0 but −Ez. If we had chosen it to be zero the results would be completely

different.

ii) in a Thomas-Fermi model the number of electrons is non-integer in general; it varies continuously as

a function of e.g.: the radius of the gate S0, or the gate potential Vg.

8.3.2 A strictly two dimensional model

As a further simplification that allows one to make the connection between the above Thomas-Fermi model

and the phenomenological models where the electron gas is assumed to be strictly two-dimensional, we

now study the case where the A(z) used as input in the previous model is replaced by a delta function:

A(z) ' δ(z − z̄) . (8.30)

Then, writing σ2D(r) for the corresponding Thomas-Fermi density, the expressions in eq. 8.25 simplify:

N =

∫

σ2D(r) d~r

Ek =
~

2

2m∗
π

∫

σ2
2D(r) d~r

Ec =

∫

∆U c(r) σ2D(r) d~r

Ee =
e2

2εr

∫

(

1

|~r − ~r′| −
1

√

|~r − ~r′|2 + 4z̄2

)

σ2D(r)

. σ2D(r′) d~r d~r′ , (8.31)
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and similarly in eq. 8.29 the V’s are replaced by unsmoothed direct plus mirror terms. With these

alterations, one has only to repeat the same iterative process to determine the corresponding solutions

for σ2D.

Results Note that the value of z̄ in eq. 8.30 has not been yet specified. One way to do that is to compare

A(z) to the Airy solution for a linear potential, which leads to:

z̄ = zm − ξ′0 − ξ0
α

− 2

3

ξ0
α
, (8.32)

where zm is the location of the maximum of A(z), ξ0 = −2.33810 and ξ′0 = −1.01879 are the locations

of the first zero and the first maximum of the Airy function, and α = (2m∗γ/~2)1/3, with γ the slope of

the potential eVg+d(0, z) at z = zm.

Starting from the expression for ∆̄U c in eq. 8.16 and approximating again A(z) by an Airy function, we

arrive at:

∆U c(r) = (eVg+d(r, z3) − eVg+d(0, z3))

.
z̄

z3

√

S2
0 + z2

3

S2
0 + z̄2

, (8.33)

where z3 is the location of the plane separating the spacer and the substrate.

Results: For the same gate parameters Vg = −1.27 V, S0 = 210 nm we then find Q ' 51 electrons

instead of the 54 of the 3D calculation. This is rather satisfactory given the simplicity of the Thomas-

Fermi approximation and the further simplification introduced by eq. 8.30. In figure 8.5 we compare the
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predicted σ2D(r) to the one from the factorized ansatz (2+1 D). As can be seen the overall extension and

density of the dot are fairly well predicted by Thomas-Fermi, but the quantal oscillations are missing and

this affects not only the inner density profile of the dot but also the surface. Note that by adjusting z̄ we

could increase the number of electrons from 51 to 54 and raise the Thomas-Fermi profile to bring it into

better quantitative agreement with the 2+1 D density, though the oscillations would still be missing.

Figure 8.6 shows the confinement and Coulomb fields, and their sum. In the same figure the corresponding

fields of the factorization ansatz are shown as dotted lines: they are practically indistinguishable from

Thomas-Fermi. In that sense Thomas-Fermi is a particularly good approximation [2]. These fields could

then be inserted into the Schrödinger equation which allows one to reproduce the 2+1 D results and

recover quantal effects after a single iteration.

8.3.3 Shikin model

The 2D Thomas-Fermi model above is based on the semiclassical approximation for the kinetic energy.

Some time ago, in a somewhat different context, Shikin et al. [3, 4] proposed a more drastic approximation:

a classical model where the kinetic energy contribution was neglected in writing the total energy of the

dot, and no mirror term was explicitly included. In addition they assumed that the net confining potential

was parabolic:

∆U
S

c (r) = U0c +
1

2
kr2 . (8.34)

With these simplifications they obtained an analytic solution for the charge distribution:

σS(r) = σ0

√

1 − r2

R2
0

(8.35)
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with σ0 and R0 given analytically in terms of the parameters defining the potentials. We shall now extend

this method including appropriate approximations for the contributions of the mirror potential and the

kinetic energy. We will show that one still obtains analytic expressions and that our extension leads to

results that compare very well with the 2D Thomas-Fermi predictions of the previous section.

Model S0: Our starting point is to suppose that the mirror part of the electron-electron interaction

U2D,m(r) = −e
2

εr

∫

σ2D(r′)
√

|~r − ~r′|2 + 4z̄2
d~r′ , (8.36)

can be combined with the confining potential and these together can be approximated by the parabolic

form given in eq. 8.34, with the values of U0c and k fitted to the curve computed from eqs. 8.33 and

8.36. Then eq. 8.28 becomes:

µ = Ez + U0c +
~

2π

m∗
σ2D(r) +

1

2
kr2 + U2D,e(r) (8.37)

with

U2D,e(r) =
e2

εr

∫

1

|~r − ~r′|σ2D(r′) d~r′ . (8.38)

It is now easy to prove[2] that Shikin’s form, eq. 8.35, with appropriate parameters, is a solution of

the above equation if we approximate the small kinetic energy contribution by its truncated quadratic

expansion:

~
2π

m∗
σ2D ' ~

2π

m∗
σ0

(

1 − r2

2R2
0

)

. (8.39)

Using the identity

∫

d~r′

√

1 − r′2

R2
Θ

(

1 − r′2

R2

)

|~r − ~r′| ≡ 1

2
π2R

(

1 − r2

2R2

)

,

0 < r < R , (8.40)

we get

U2D,e(r) =
π2e2σ0R0

2εr

(

1 − r2

2R2
0

)

, (8.41)

and therefore eq. 8.37 becomes:

µ = Ez + U0c +
~

2π

m∗
σ0 +

e2π2

2εr
σ0R0

+
r2

2R2
0

(

kR2
0 −

~
2π

m∗
σ0 −

e2π2

2εr
σ0R0

)

, (8.42)
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so that to satisfy it, one has to choose:

R0 =

√

µ− Ez − U0c

k

σ0 =
µ− Ez − U0c

~
2π

m∗
+
π2e2

2εr
R0

(8.43)

Knowing these, direct integration gives the total number of electrons:

N =
2

3
πσ0R

2
0 (8.44)

The only flaw in this scheme, is that U0c is the value of the mirror potential at the origin, which depends

on N , and thus iterations are required. Therefore we formulate below a new version of the model which

treats the mirror term explicitly, but the price will be that the equation determining R0 has to be solved

numerically. Therefore we pass to

Model S1: whose ingredients are as follows:

a) we approximate only the gates plus donors potential, eq. 8.16 by a parabolic term:

∆U c(r) ' U2D,c(r) ≡ 1

2
kcr

2 . (8.45)

The value of k can be easily extracted from the curve computed with eq. 8.33.

b) we assume that the density is still of the form of eq. 8.34, and therefore we find that the direct potential

is given by eq. 8.41.

c) the mirror term can be expressed in a simplified form which is still sufficiently accurate: writing D = 2z̄

for the distance between the plane of the dot and its mirror, one has:

U2D,m(r) = −e
2

εr

∫

d~r′
σ2D(r′)

√

D2 + |~r − ~r′|2

' −e
2

εr

∫

d~r′
σ2D(r′)

√

D2 +
R2

u

2 + r2

= −e
2

εr

N
√

D2 +
R2

u

2 + r2
. (8.46)

Here we have replaced the |~r−~r′|2 by its average over r′ on a uniform disk of radius Ru. We have checked

that this approximation is very accurate if Ru is chosen to be equal to
√

2/3R0, i.e. it is the radius of

the uniform disk containing the same charge as Shikin’s density of radius R0. Therefore

U2D,m(r) = −e
2

εr

N√
L2 + r2

, (8.47)

where L2 = D2 +R2
0/3.
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Starting again from the expression for the chemical potential

µ = Ez +
~

2π

m∗
σS(r) + U2D,c(r) + U2D,e(r) + U2D,m(r) . (8.48)

we see clearly that this cannot hold for all r when the density is taken to be of Shikin form, unless

parabolic approximations for the kinetic energy and mirror terms are introduced. To avoid these we

instead make the alternative approximation of requiring that eq. 8.48 be satisfied only in two cases: 1)

when r = 0:

µ = Ez +
~

2π

m∗
σ0 +

π2e2

2εr
σ0R0 −

e2

εr

N

L

= Ez + σ0

[~
2π

m∗
+
π2e2

2εr
R0(1 − 4

3π

R0

L
)
]

,

(8.49)

and 2) as an uniform average over a disk of radius R0: Integrating both sides of 8.48 and dividing by

πR2
0 we find:

µ = Ez +
2

3

~
2π

m∗
σ0 +

3

4

π2e2

2εr
σ0R0 +

1

4
kcR

2
0

− 4πe2

3εr
σ0

(

√

L2 +R2
0 − |L|

)

. (8.50)

From 8.49 and 8.50 we can eliminate σ0 and write an analytic equation with R0 as the only unknown.

This equation is solved numerically for R0, using e.g. a Newton-Raphson algorithm.

Results The predicted density is also shown in figure 8.5 (dotted line.) As can be seen it is very close

to the Thomas-Fermi prediction. This confirms the validity of the additional approximations introduced.

The numerical values found are σ0 = 0.00240 nm−2, R0 = 101.0 nm and N = 51.22 electrons.
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Chapter 9

Quantum Monte Carlo Methods
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9.1 Brief outline of the techniques

Quantum Monte Carlo (QMC) methods enable accurate solutions of the Schrödinger equation for many-

particle systems. This is particularly useful in such cases where the interactions between particles are

strong enough to make mean-field-type solutions erroneous, sometimes even qualitatively. Examples of

such systems are strongly correlated electrons in condensed matter or discrete-lattice Hamiltonians with

quantum degrees of freedom.

In variational QMC, one postulates a wavefunction for the system and calculates the physically

interesting expectation values using Metropolis techniques. For example, the ground state energy of a

N -particle system is

EV CM =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∫

dR3N

(

HΨ

Ψ

)

R

|Ψ(R)|2
∫

dR3N |Ψ(R)|2 =
1

M

M
∑

i=1

(

HΨ

Ψ

)

Ri

(9.1)

where H is the Hamiltonian and R defines a random walk in 3N dimensions (R = (r1, r2, . . . , rN )).

Variational QMC is basically a trick to calculate the multidimensional integral, and the essential physics

is contained in the wavefunction. Its choice and variational freedom in minimizing EVMC are therefore

crucial.

In diffusion QMC, one realizes an iterative projection by solving the Schrödinger equation in imaginary

time:

|Ψ(n+1)〉 = e−τĤ |Ψn〉 n→∞−−−−−−−−→ |Ψ0〉 . (9.2)
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Here, τ is an arbitrary small constant and |Ψ0〉 an arbitratry initial state. The quantum-statistical

symmetry of the wavefunction is important. For fermions, the total wavefunction is antisymmetric.

Usually, the node structure is preserved during diffusion QMC iteration (the fixed-node approximation).

In this case, the method finds the best ground-state wavefunction with the same nodes as the initial

(trial) wavefunction. The trial wavefunction thus enforces the fermionic antisymmetry and selects the

state.

For excited states, diffusion QMC finds the exact solution provided that the nodal structure is exact.

A popular choice for QMC is the fermion trial wavefunction of the Jastrow-Slater form

Ψ(r1, . . . , rN ) = J(r1, . . . , rN ) ×
∑

i

ciDi(r1, . . . , rN ) (9.3)

where J is the Jastrow factor and Di are determinants made of single-particle wavefunctions (“orbitals”)

for the electrons. The Jastrow factor depends on the inter-electronic distances and accounts for their

repulsion, is positively definite, and also takes care of divergences of the inter-electronic (Coulomb)

potential. The summation is over a few (Slater) determinants, which defines the nodal surface. Note that

there are not millions of determinants, as in multiconfiguration quantum-chemistry calculations.

An important current theme is the optimization of the trial wavefunction. This is usually best done

by not minimizing the trial energy directly, but minimizing the variance of the “local” energy

σ2[α] =

Nconf
∑

i=1

(

HΨ(Ri, {α})

Ψ(Ri, {α})
− Ē

)2

(9.4)

depending on a set of parameters α.

QMC methods have proven most useful for obtaining accurate values for binding energies, bond

distances and angles, vibrational and torsional excitations of molecules and clusters. They are also

increasingly used in solid state physics problems, including the core electrons of atoms treated within

a pseudopotential construction. They can also be generalized to finite temperatures through the path-

integral formulation. Techniques are being developed for accurate evaluation of interatomic Hellmann-

Feynman forces from the QMC total energies, which would enable first-principles molecular-dynamics

simulations in the QMC context.

9.2 Challenges

QMC methods offer in general a powerful approach for quantitative modeling of systems where quantum

many-body correlations cannot be modeled accurately enough by mean-field techniques, such as those

based on density-functional theory (DFT) or (for bosons) the Gross-Pitaevskii theory. QMC methods

are best suited for benchmarking ground-state properties, and they allow system sizes well beyond those

relevant for exact-diagonalization techniques (typically less than 10 electrons). Another strength of QMC

methods (of the path-integral type) is that they enable the inclusion of quantum and classical degrees of
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freedom on equal footing and at finite temperatures.

Yet the QMC methods in their standard formulations are computer-intensive, which has slowed down

their application in real-world materials problems, as opposed to “clean” quantum liquids and gases and

model solid-state problems, such as a few electrons confined in a parabolic potential well.

An important challenge for the QMC methods is thus to develop new algorithms and implementations

with better scaling as the number of degrees of freedom is increased. There has been considerable recent

progress in developing linear-scaling QMC algorithms, which could open the door applications to system

sizes with hundreds rather than tens of electrons, for example.

A second challenge is the solidification of the QMC techniques as applied to excited states and the

energy hypersurfaces away from the Born-Oppenheimer ground state. Such nonadiabatic energy contours

are very important in understanding and modeling situations studied by pump-and-probe spectroscopies

and relevant for reaction and relaxation dynamics.

A third challenge is provided by the improved treatment of interatomic forces, both in the ground

and excited states. The ultimate goal should be the capability to simulate the full nonadiabatic dynamics

of a coupled electron-ion system at finite temperatures and in real time, a situation most relevant for

e.g. time-resolved x-ray imaging of nanoscale structures at future synchrotrons, such as those based on

free-electron lasers. A specific question in this context is whether QMC can offer an alternative way to

model the weak van der Waals-type interactions, induced by nonlocal correlations between atomic-scale

objects. These are notoriously difficult to model by standard techniques.

9.3 Opportunities for applications relevant in nanosciences

The application areas for QMC methods are wide and expanding, especially if the pace of methodological

development can be maintained. Apart from the traditional application areas of QMC methods to

quantum fluids (both bulk, surface and interface properties) such as electron gas, helium and hydrogen

etc., the field of confined quantum gases continues to pose interesting problems. These low-density,

low-temperature systems are clean, controllable quantum systems where the role of quantum statistics,

interparticle interactions, and optical/magnetic confinement can be systematically studied. Periodic

optical lattices can be generated in one, two or three dimensions, and the behavior can be tuned between

a Fermi or Bose gas and a Hubbard-like lattice.

Semiconductor quantum dots continue to attract modelling interest, which seems to be moving from

“toy” problems of a few electrons in a featureless trap towards realistic aggregates of thousands of atoms.

The subtle interplay between many-body effects and others (band structure, spin-orbit coupling etc.) can

be explored by systematic application of improving QMC techniques.

For modeling of realistic nanostructures, atomic-scale defects are important but notoriously difficult

to model accurately in semiconductors and insulators. The defect-associated electronic levels control their

properties, but are difficult to place accurately due to the inaccuracy of standard DFT methods in the

bandgap region. QMC could come to rescue here and enable much better prediction of defect-induced

properties.
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QMC-based molecular dynamics in the ground and excited states, already described above, is a major

possibility for simulation of nanoscale structures, for example the real-time melting and dissociation

dynamics of clusters and aggregates, either unsupported or depeosited on a substrate. The range of

opportunities in modeling the processing of various nanoscale objects, including biologically relevant

molecular systems, is enormous.

Nanoscale quantum transport attracts much interest among the theory and modeling communities.

The popular approaches to nanoscale and molecular electronics transport include the Landauer-Bttiker-

type mean-field methods, time-dependent DFT, and the quantum master equation. Yet the role of

strong inter-electron correlations in the narrow channels or constrictions remains unclear. QMC methods,

with their explicit inclusion of many-body correlations, could offer interesting alternatives for accurate

modeling.

These are just a few examples of the opportunites that the QMC approach provides for theoretical and

computational nanoscience. It is a robust but flexible framework. Standardised, well-tested software with

new functionalities and utilities has appeared, which has quickly increased the popularity of the method.

The range of applications has increased substantially, especially in the nanoscience area. QMC not only

complements and benchmarks the widespread mean-field-type approaches, but also provides alternatives

for situations where those simply fail. One can foresee the emergence of QMC acomparable to DFT as a

popular platform for modeling nanoscale quantum systems.
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10.1 Brief outline

Molecular dynamics (MD) simulation has become the tool of choice to model physical properties of

complex systems. The basic idea is to explicitly solve the equations of motion of the atoms and molecules

in the system, interacting with specified forces and under given external constraints. The description

of the instantaneous forces can vary from empirically fitted force fields to “tight-binding” or Hückel

treatments of electronic degrees of freedom and eventually to full, “ab initio” MD where the forces are

calculated by minimizing the electronic quantum energy functional at each time step. An alternative

formulation of the latter is the famous Car-Parrinello approach, where the electronic degrees of freedom

are assigned a fictitious classical mass and are allowed to relax to the adiabatic energy surface in the

course of the simulation.

MD simulation has become a huge industry with wide-range applications in physics, chemistry, ma-

terials science and molecular biology. The large increase in computing power during the last 50 years

has pushed the attainable timescales from nanoseconds to milliseconds and the system sizes from tens of

atoms to billions of atoms. However, even if the CPU power and memory capacities continue to increase

at this speed, we can cover only a tiny fraction of the experimentally relevant length and time scales. The

capability gap can only be bridged by the development and systematic application of new computational

techniques.

In the nanoscience realm, there are several outstanding issues to be resolved via direct modeling and

simulation. These are often related to the manufacturing and processing of nanoscale objects through
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a complex set steps, including physical and chemical deposition, annealing, in situ chemical reactions,

diffusion on a substrate, evaporation and desorption, etc. In many cases, these process steps involve

non-equilibrium and nonadiabatic processes and non-equilibrium thermodynamics. The timescales range

from femtoseconds to seconds and beyond, and the system sizes range from a few atoms up to mesoscale

(micrometer) objects. Biologically inspired nanostructures are rapidly increasing in importance, as the

self-assembly, self-organisation and other bottom-up techniques gain popularity. Biological systems are

typically far too large for their force fields to be treated fully quantum mechanically.

Many of the interesting phenomena currently investigated in nanometer-size objects are related either

to their electronic and optical properties (e.g. in quantum dots, wires and rings and in carbon nanotubes)

or to their peculiar structural and mechanical properties (e.g. in carbon nanotubes and composites and

multiferroic thin films). Systems with unique chemical properties have been discovered, such as the

strongly enhanced catalytic activity in small gold clusters. Magnetic properties can be tuned as well.

In the future, it is likely that new, functionalized materials and devices will be built by combining

different nanoscale objects into aggregates with truly novel properties. Metamaterials with completely

new electromagnetic properties (such as negative dielectric and magnetic permittivity and refractive index

over a wide range of frequencies) are a distinct possibility. MD simulation is an indispensable tool in the

design of the assembly process of such materials.

10.2 Challenges for molecular dynamics simulation

Especially from the nanoscience perspective, the outstanding challenges of MD simulation are related to

the Holy Grail of multiscale modeling, i.e. to the quest of bridging together timescales from femtoseconds

to minutes and length scales from sub-nanometers to millimeters. For short time and length scales, this

quest is coupled to the progress in QMC and other methods (see above). For long time and length scales,

the coupling is to kinetic equations and stochastic methods, and eventually to continuum equations. The

multiscale challenge includes the ability to do systematic coarse-graining so as to eliminate irrelevant

degrees of freedom, and yet to retain an accurate and realistic description in the remaining degrees of

freedom.

Examples of technique-related challenges for MD simulation include the following:

Hybrid quantum-classical techniques. The central idea, relevant especially for biologically rel-

evant nanosystems, is to apply full quantum description (Schrödinger equation) only for a small, most

crucial part of the system, and to treat the rest classically. The challenge is to develop efficient and

reliable methods for the embedding of the quantum part to the environment, described either in terms

of Newtonian MD equations or as a more featureless continuum.

Mesoscale modeling. For a typical process simulation it is often necessary to reach length scales in

the micrometer range, beyond the limits of what can be achieved by standard MD simulations. Methods

for coarse-graining have to be developed. This means lumping together groups of atoms and molecules

as “effective particles” with “renormalized” interactions. The challenge is to systematically derive those

interactions. Methods such as Lattice Boltzmann Techniques or Dissipative Particle Dynamics are vig-
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orously pursued to provide downward and upward links to mesoscale modeling.

Rare event simulations. An often recurring problem in MD simulations is how to pass through the

bottleneck caused by rare events in the dynamical evolution. In many cases, free-energy barriers exist and

lead to very long simulation times for the relevant phenomena. The indentification of such barriers is far

from trivial: the barrier corresponds to an ensemble of transition states in a very high-dimensional space.

Computational techniques and algorithms are being developed to locate the transition-state ensemble

and thus to guide the system through the rare-event bottleneck.

Solvent/environment effects. Ab initio MD enables the study of environmental effects (solvents,

ligands etc.) on a specific chemical reaction. Ab initio MD is however time-consuming and it is difficult

to reach simulation times needed to observe a chemical reaction in silico. However, such a simulation

can deliver the free energy of a given reaction coordinate and thus open a way to uncover the reaction

kinetics. The challenge is develop systematic methods to modeling chemical kinetics.

A remarkable convergence in methods and approaches is taking place in the nanoscience community,

where scientists with different backgrounds now strongly interact. Roughly speaking, three streams seem

to converge, also in their arsenals for simulation. Biophysics/biochemistry at the molecular level meets

computational chemistry and computational physics/materials science. Quantum physics and chemistry

meets Newtonian dynamics and statistical thermodynamics, equilibrium ensembles meet nonequilibrium

kinetics. Molecular dynamics simulation is at the epicenter of this convergence, and will continue to play

a very important role in computational and theoretical nanoscience.



294 Molecular Dynamics Simulations



295

Chapter 11

Electric field calculations in scanning

probe microscopy: Generalized

image charge method

E. Sahagún, G. M. Sacha, L. S. Froufe-Pérez and J. J. Sáenz

Moving Light & Electrons (MOLE) group,

Departamento de F́ısica de la Materia Condensada,

Universidad Autónoma de Madrid, E-28049 Madrid, Spain

Abstract. We present a method to calculate the electrostatic field between a metallic tip of arbitrary

shape and a metallic or insulating sample. The basic idea is to replace the electrodes by a set of

“image” charges. These charges are adjusted in order to fit the boundary conditions on the surfaces.

This generalized image-charge method is particularly useful for modelling electrostatic fields, forces and

capacitances when different length scales are included in the simulation. The versatility of the method

allowed for an analysis of the electrostatic problem as a function of the tip apex geometry. The method

can be easily extended to analyze multilayered and anisotropic samples.

11.1 Introduction

The long range nature of electrostatic interactions makes them specially suitable to perform noncontact

scanning probe microscopy (SPM) imaging of both conducting and insulating materials. By applying a

voltage between a force microscope tip and a sample, electrostatic force microscopy (EFM) and related

techniques have been used to study capacitance [1], surface potential [2], charge or dopant distribution

[3], topography and dielectric properties of metallic and insulating [2, 4] surfaces, the dielectric response

of single molecules [5, 6] and to deposit and image localized charges on insulators [7]. In analogy with the
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magnetic force microscope [8], EFM has been used to image the domain structure of ferroelectric crystals

[9]. Polarization forces have also been used to perform electrostatic spectroscopy [10], to imaging weakly

bound materials and liquids [11] and to induce the formation of water nanobridges [12].

As in other SPM techniques, the interpretation of the EFM images is not always evident [13]. Since

EFM is a nonlocal technique due to the long range nature of the electrostatic interaction, the detailed

shape and dimensions of the tip must then be taken into account for a precise calculation of both force

and capacitance [14, 15, 16, 17].

In a different context, the electric field generated by sharp tips is the most critical parameter governing

electron field emission and closely related phenomena. Field electron and ion microscopes [18, 19], field

emission electron guns [20], thin-film field emission cathodes [21] and many devices based on vacuum field

emission are found throughout the sciences. The advances in engineering of ultrasharp tips at atomic

scale [22, 23] and, more recently, the development of field emission based flat panel displays [24] and nano-

electromechanical single electron transistors [25] generated renewed interest in this field. The remarkable

properties of the electron beam generated from these nanometer-sized sources depend critically on the

electric field around the tip apex [26, 27, 28, 29, 30].

Additional motivation for our work arises from the combination of field emission devices with scanning

tunneling microscope (STM) technology [31, 32, 33, 34, 35]. Near field emission STM [36] provides a

direct, non invasive approach for investigating at nanometer scale. An early example of such approach

was the Young’s “topografiner” [37]. When a STM is operated in the near field emission regime (like a

topografiner), the electric field strength at the emitter surface determines the I versus V characteristics

through the Fowler-Nordheim equation [19, 38]. Operating the instrument in the constant current mode

implies an approximatelly constant field at the emitter surface. By solving the Laplace’s equation we

can then calculate the field strength everywhere between the tip and the sample, and thus determine the

relationship between the tip-sample distance S and the emitter voltage V [37].

Most of the predictions of the electric field shape and amplitude in the tip-sample gap used so far

are based on simple analytical models or sophisticated numerical calculations. Moreover, theory an

experiments on field emission systems have been mainly focused in the far field regime, i.e. when a tip

cathode is placed at a macroscopic distance from the sample (anode) surface. The main problems of the

simulations are related to the different scales of a typical SPM setup. While the tip-cantilever system size

is of the order of micrometers, the tip radius can be of the order of few nanometers and the tip-sample

distance can range from macroscopic to sub-nanometer distances.

The aim of this work is to introduce the Generalized Image-Charge Method (GICM) [39, 40, 41] as

a very useful technique to overcome the scale problem in SPM geometries. The GICM is optimized to

calculate the electrostatic field between a metallic tip of arbitrary (axial symmetric) shape and a sample

surface for any tip-surface distance. The basic idea is to replace the electrodes by a set of “image” charges.

These charges are adjusted by means of a standard least-squares method in order to fit the boundary

conditions on the surfaces. The method is much simpler and faster than standard methods used to solve

the Laplace equation. It is also rather flexible and can be applied to many different problems ranging

from the design and characterization of field emission guns, the study of field effects in STM experiments
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[36, 42] and, in general, modelling electrostatic interactions in SPM geometries.

Figure 11.1: Graphic scheme of the GICM basis. A biased tip in presence of a substrate (a) is consider to be a
revolution solid (b) and is substituted by a set of charges (qi, λi) and its images (q′

i, λ′
i) (c) which give rise to an

equipotential surface equal in geometry and value to that of the tip.

In section 11.2, we present the Generalized Image Charge Method and discuss the details of the field

calculation. The original method [39] was restricted to work with smooth tips but probably the most

important restrictions are connected with the substrates. They should be homogeneous and flat. But

despite of this restrictions, many generalizations have being made [41]. Some of them are presented in this

work. In particular, we will discuss an extension of the GICM to model electrostatic fields for dielectric

and anisotropic thin films. As a particular application, in section 11.3 we present some examples and

a number of different results of interest in Electrostatic Force Microscopy. The concluding remarks are

given in section 11.4.

11.2 Generalized Image-Charge Method (GICM)

The calculation of the electric field generated by very sharp tips is far from be a trivial problem. One

of the main difficulties in the computation is to handle accurately the large change in geometrical scale

between the tip radius and the tip to sample spacing. The situation is even worse when the tip has not

a smooth shape, for example due to the presence of small nanometer-scale protrusions.

In the past decades many methods for calculating the electrostatic field in field emission systems have

been developed [20]. Among these, effective charge-density methods [43, 44, 45] are specially appropriate

for the calculation of capacitances or the computation of trajectories in electrostatic focusing [43, 44, 45,

29]. With a clever choice of the charge distribution on the surface it is even possible to simulate the

electric field at atomic scale [28]. Several techniques based on finite elements have also been developed

to simulate electrostatic force in the context of AFM [46].

From a general point of view, the charge density methods emphasize the superposition principle
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and the self-consistency of the boundary conditions [45], e.g. the charges on the conductor are cal-

culated by requiring that the potential be a constant on each conductor surface, in contrast with the

finite-difference/element approach in which the potential at each point is obtained as the average of the

potentials at the adjacent points. Following the same basic ideas, we will introduce the GICM as a

method specially suitable to calculate the electrostatic field between a metallic tip of arbitrary shape and

a sample surface for any tip-surface distance. The aim of this study is to solve the electrostatic problem

presented in figure (11.1a), this is, an SPM biased probe above a certain substrate. The GICM solves

this problem in a very intuitive way which not only gives extremely accurate results but implies a very

low computational effort.

Making use of the classical electrostatic image method, we replace the electrodes by a set of “image”

charges. The central idea is to substitute the whole tip by a set of charges (see figure 11.1). A biased

tip can be considered roughly as a revolution solid with a well defined electrostatic potential V0 over its

surface. If we find a system of discrete charges whose potential were the same as the one of the tip’s

surface, both systems would be equivalent. So knowing the value and position of this charges which

”simulate” tip equipotential surfaces the problem is reduced to the calculation of the potential generated

by a charge over a substrate. And here is where the classical image-charges method plays its role. It

allows to solve in a very easy way the potential due to a charge in presence of flat interfaces.

For simplicity, let us discuss in some detail the case of a sharp tip with axial symmetry in front of

a flat homogeneous semi-infinite insulating surface characterized by a dielectric permitivity ε. First we

place, along the symmetry axis (ρ = 0), a set of M segments λ and N discrete charges q in front of the

sample surface (z = 0). The electrostatic potential of a point charge located at z = zn is simply given by

the textbook image-charge result:

qn
ε0
G(ρ, z; zn) =

qn
ε0







(G0(ρ, z; zn) − βG0(ρ, z;−zn)) for z > 0

(1 − β)G0(ρ, z; zn) for z < 0
(11.1)

where β = (ε− 1)/(ε+ 1) and

G0(ρ, z; zn) =
1

4π
√

ρ2 + (z − zn)2
. (11.2)

Notice that G0 and G are the electrostatic Green functions in free space (i.e. just the Coulomb potential)

and in the presence of the sample, respectively.

The corresponding potential for linear charge density, uniformly distributed along a segment ( zm −
Lm/2 < z < zm + Lm/2), can then be written as:

λm

ε0
G(L)(ρ, z; zm) =

λm

ε0

∫ zm+Lm/2

zm−Lm/2

G(ρ, z; z′)dz′

=







(

G
(L)
0 (ρ, z; zm) − βG

(L)
0 (ρ, z;−zm)

)

for z > 0

(1 − β)G
(L)
0 (ρ, z; zm) for z < 0

(11.3)
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with

G
(L)
0 (ρ, z; zm) =

1

4π
ln

{

(z − zm + Lm) +
√

ρ2 + (z − zm + Lm)2

(z − zm − Lm) +
√

ρ2 + (z − zm − Lm)2

}

. (11.4)

The total electrostatic potential at a point, (ρ, z) (z > 0), generated by our distribution of charges would

then be

V (ρ, z) =
N
∑

n=1

qn
ε0
G(ρ, z; zn) +

M
∑

m=1

λm

ε0
G(L)(ρ, z; zm) (11.5)

The position zn and strength qn of each point charge and the length, 2Lm, the position of the center,

zm, and the charge density, λm, of each segment are the unknowns of the problem. These parameters

are adjusted in order to fit the boundary condition on the tip surface, V = V0 (notice that the

boundary condition on the flat surface is already included in Eq. 11.5 through the contribution of the

image charges).

Once we have {qn} and {λm}, we can obtain the capacitance of the tip-sample system from the

expression C = Q/V0. The total charge Q is obtained from the sum of the charges inside the tip, i.e.

C =
1

V0

{

∑

n

qn +
∑

m

(2λmLm)

}

. (11.6)

The force and force gradient can then be calculated from the coulomb interaction or from the derivatives

of the capacitance.

11.2.1 Green’s Function and multilayered structures

As we have seen, the basic idea of the GICM is to solve the electrostatic problem fulfilling boundary and

interfacial conditions by placing image charges. If the system is simple enough, one can place this images

using ones intuition. As we will see, the method can be extended and systematized through the use of

Green’s functions.

Let us again consider a point charge over a general substrate composed by different layers with

dielectric permitivity εi and thickness Wi but still having axial symmetry (see Fig. 11.2). The total

electrostatic potential above the sample (i.e. for z > 0) is proportional to the total Green’s function that

can be expanded in cylindrical coordinates as [48]

G(ρ, z; zn) = G0(ρ, z; zn) +
1

4π

∫ ∞

0

f1(k)J0(ρk)e−kzdk (11.7)

where G0 is the free space Green’s function (Eq. 11.2),

G0(ρ, z; zn) =
1

4π
√

ρ2 + (z − zn)2
=

1

4π

∫ ∞

0

J0(ρk)e−k|z−zn|dk (11.8)

and f1(k, zn) is a function that depends on the sample. For the homogenous dielectric sample discussed
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Figure 11.2: Graphic scheme and coordinate system of the problem. The media under the charge can be in
principle made of an indefinitely number of layers with different dielectric permitivities.

above, it is simply given by f1(k, zn) = −βe−kzn .

Within each dielectric layer i (see FIG. 11.2) the Green function can be written as

Gi(ρ, z; zn) =
1

4π

(∫ ∞

0

fi(k, zn)J0(ρk)e−kzdk +

∫ ∞

0

gi(k, zn)J0(ρk)ekzdk

)

(11.9)

Notice that the corresponding Green functions for a linear charge distribution is again given by

G
(L)
i (ρ, z; zm) =

∫ zm+L/2

zm−L/2

Gi(ρ, z; z′)dz′ (11.10)

The different functions {fi(k, zn), gi(k, zn)} can be obtained from the matching conditions at each

interface:

G = 0 at infinite or on the grounding electrode (11.11)

Gi = Gi+1 at the interfaces (11.12)

εi
∂Gi

∂z
= εi+1

∂Gi+1

∂z
at the interfaces (11.13)

The complete set of equations obtained from all the matching conditions can be solved numerically by
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using, for example, a simple transfer matrix technique.

For the case of a thin film dielectric sample (of thickness h and dielectric permitivity ε ) on a grounded

metallic electrode (see Fig. 11.4) it is easy to find a closed expression for f1(k) in Eq. 11.7:

f1(k) = − ε− tanh(kh)

ε+ tanh(kh)
e−kzn (11.14)

In summary with this formalism it is possible to calculate in a very systematic way the Green function

of mulilayered systems for charges and segments of charge.

11.2.2 Fitting the boundary conditions on the tip surface

Figure 11.3: Complete scheme of the tip-substrate setup for a sample made of two layers. The equipotential
surfaces are computed assuming ε1 = 1, ε2 = 4 and ε3 = 2.

To describe the geometry of the tip we take a sample of P points, ~rj = (ρj , zj) (j = 1, P >> N,M),

on the tip surface where the potential must be constant V = V0. The best values for Lm,zm and qi can
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then be obtained after minimization of

χ2 =

P
∑

j=1

{V (ρj , zj) − V0}2
(11.15)

Including the lengths and positions of the charges in the minimization process leads to a non-linear

minimization problem which is poorly convergent. This can be solved by using a nonlinear least squares

minimization routine [47]. However, the initial guess of the parameters is somehow fussy, sometimes

unstable and slows down the calculation. After minimization, for a given tip geometry, the optimized

positions and lengths of the effective charges are almost independent on the tip-surface distance [39].

Since the potential is a linear function of the charges, after a first non linear minimization (or after an

appropriate guess of positions and lengths) the problem becomes a simple linear least-squares fitting. In

this case, the potential can be obtained with a negligible computational effort. An appropriate choice of

charge positions and lengths is critical for an optimum performance of the GICM method [41].

For simplicity, and as an example, we will consider the geometry of the general tip shown in figure

11.3. The shape of this tip can be described with a truncated cone and two spheres of radius R1 and R2.

In practice, in order to get an equipotential having the spherical shape of the tip near the apex a good

choice is to place a set of point charges at the positions of the image charges inside a metallic sphere over

a plane surface [41]. To define the body of the tip we use a set of segments which are shorter near the

apex and much longer in the center of the tip (see Fig. 11.3), being their increment geometrical.

Another important issue in the GICM is the choice of a set of sampling points on the tip surface.

Although the tip apex gives the most important contribution to the electrostatic force, the macroscopic

contribution must be also taken into account. The number of points must be balanced along the tip

surface so that we have a higher density in those places with lower curvature radius [41].

After the minimization process, the equipotential surfaces generated by the set of charges fits almost

perfectly the original surface. Of course, the final result comes from a least square minimization so the

voltage in all the sample points Pk is not exactly V0 (notice that the number of sample points is much

larger than the number of unknowns). In practice, the potential on any of the sample points deviates

less than 1% from V0.

11.2.3 Anisotropic substrates.

The problem of a tip over an anisotropic substrate can be easily solved under the formalism presented

here. Among other different applications, the accurate modelling of electrostatic fields in these systems

play an important role in the understanding piezoelectric and dielectric properties of thin films, includ-

ing ferroelectric properties, piezoelectric coupling coefficients, and domain structures, that can deviate

significantly from the corresponding bulk values [49]. The GICM should also find important applications

in the optimization of piezoresponse force microscopy (PFM)[50] and its spectroscopic variants.

Let us consider an anisotropic media characterized by a dielectric tensor whose non-zero components
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Figure 11.4: Equipotential map with the modulus of the electric field superimposed. (D = 0.5R1, W = 4R1 and
ε = 6).

are given by

εxx = εyy ≡ ερ ; εzz = εz. (11.16)

In this case the calculation of the electrostatic potential can be done from a simple generalization of the

appropriate Green’s functions. For example, the Green’s function in an infinite homogeneous medium

with this anisotropy is given by [51]

G0(ρ, z; zn) =
1

4π
√
ερεz

{

ρ2 +
ερ
εz

(z − zn)2
}−1/2

(11.17)

which, in analogy with Eq. 11.2, can be rewritten as

G0(ρ, z; zn) =
1

4π
√
ερεz

∫ ∞

0

J0(ρk)e
−k|z−zn|

√

ερ
εz dk (11.18)

For a multilayered system made of such anisotropic materials, equations 11.7, corresponding to the

potential of a point charge over the anisotropic sample remains the same while, within each dielectric

layer i, the Green function (Eq. 11.9) becomes

Gi(ρ, z; zn) =
1

4π

(∫ ∞

0

fi(k, zn)J0(ρk)e
−kz

√

ερ
εz dk +

∫ ∞

0

gi(k, zn)J0(ρk)e
kz
√

ερ
εz dk

)

(11.19)

The different functions {fi(k, zn), gi(k, zn)} can be obtained from the matching conditions at each inter-
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Figure 11.5: Equipotential surfaces for an anisotropic thin film. ( for R = 1, L = 1000R, D = 0.5R, θ = 15 and
substrate thickness W = 4R)

face:

G = 0 at infinite or on the grounding electrode (11.20)

Gi = Gi+1 at the interfaces (11.21)

εiz

∂Gi

∂z
= εi+1z

∂Gi+1

∂z
at the interfaces (11.22)

For the case of a thin film made of anisotropic material on a grounded metallic electrode it is easy to

find a closed expression for f1(k) in Eq. 11.7:

f1(k) = −
√
ερεz − tanh(kh

√

ερ

εz
)

√
ερεz + tanh(kh

√

ερ

εz
)
e−kzn (11.23)

For the simple case of a metallic tip in front of a semi-infinite anisotropic media the electric fields

around the tip (and the corresponding tip-capacitance) corresponds to those generated by an effective

homogeneous isotropic media with an effective dielectric constant ε =
√
ερεz (see Fig.11.5). However,

inside the substrate the potential is deformed along the z coordinate.

So finally, materials with anisotropy can be easily modelled with the GICM. The explicit calculations

involve the same effort as before. This can be specifically important in modelling fields in PFM [50].
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Figure 11.6: Absolute value of the contact force |F0| between a metallic tip and a plane dielectric sample (ε = 5.4)
vs the ratio between tip length and radius L/R for different tip angles θ = 0o, 10o, 20o (θ = 0o corresponds to a
nanotube-like tip). [After Ref. [15]]

11.3 Electrostatic Force Microscopy

The analysis of electrostatic measurements based on Force Microscopy involves a lot of different elements,

most of them at the macroscopic scale. The long range nature of the electrostatic force implies that all

of them should be taken into account for a realistic simulation. The GICM has been used to analyze the

influence of the macroscopic shape of the tip [15] as well as of the cantilever [17] for both metallic and

dielectric samples.

The analysis of electrostatic forces showed that for metallic samples the force law, except for a constant

background, only depends on the tip radius of curvature [15]. As a matter of fact, it is possible to

determine the actual tip-radius by measuring the electrostatic force-distance curves on a metallic surface

[17]. In contrast, for dielectric samples the forces depend on the overall geometry of the tip. Interestingly,

it was found [15] that the contact adhesion force does not depend on the tip size and is bound by a simple

expression which only depends on the applied bias and the sample dielectric permitivity (see Fig. 11.6).

The effect of a metallic cantilever can be included in the simulation by another series of image charges.

Although the contribution of the cantilever can be neglected for metallic samples, calculations based on

GICM showed that it can be very important for dielectric films [16]. By using appropriate image-

charge ideas, it is possible to analyze the electrostatic problem of small metallic clusters or nanotubes

absorved in dielectric samples. Modelling the electrostatic force with the GICM it was possible to predict

quantitatively the electrostatic signal of metallic objects. A very strong agreement has been obtained

between the theory and experimental results of connected and isolated single wall nanotubes [6](see Fig.

11.7).
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Figure 11.7: Scheme of a typical electrostatic force microscope. (b) Equipotential distribution for a standard
tip-sample system using the GICM method. A metallic nanowire has been included in the simulation. Inset
shows a 90o rotation of the main image. [After Ref. [6]]

11.4 Conclusions

We have presented a method able to calculate the electrostatics of a biased tip probe in SPM setups. The

main advantage of this method is the low computational cost that implies the inclusion of different orders

of magnitude in length scales characteristic of SPM. This allowed us to calculate electrostatic potential

and fields, capacitance and force versus distance curves from large tip-sample distances down to contact

for different tip geometries. The method can be easily extended to deal with thin films, multilayered

and anisotropic samples which could be very useful for local measurements of thin film polarization and

thickness.
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[41] G. M. Sacha, E. Sahagún and J. J. Sáenz J. Appl. Phys. 101, 024310 (2007).
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Conclusion

We have presented a selection of topics that are currently relevant in the field of multi-scale modeling

for nanoscale devices. Bridges still need to be built between some of the approaches, in order to create a

seamless hierarchy capable of handling the whole spectrum from complex circuits down to single molecules.

Even at the circuit level, a need is developing for approaches that are completely new with to respect

to those used for classical devices, due to the unavoidable interactions between nanoscale devices and

interconnects and to the possibility of introducing device concepts and architectures that go beyond the

three-terminal device paradigm.

On the other hand, modeling tools developed for nanostructures, including atomistic simulation

schemes, are acquiring importance also for the analysis of downscaled CMOS devices, which are now

rapidly approaching the few nanometer size and start exhibiting size quantization effects and single-

electron charging phenomena.

Therefore the long term objective should consist in the creation of a suite of tools capable of handling

all types of nanoscale devices and circuits (independent of the operating principle, quantum or classical)

and to make their usage accessible also to nonspecialists of the single fields. We believe that, in order to

reach such a target, a well structured effort is needed, aimed at coordinating and addressing the efforts of

the many groups active in nanoscale modeling and at avoiding unnecessary duplications that have often

occurred in the past, with several groups developing complex codes with very similar purposes.

Overall, a mature hierarchy of simulation tools for nanoelectronics, accessible to academia and in-

dustry, will be instrumental in the development of a host of applications for the properties of nanoscale

structures that have been uncovered in the last decades. Availability of quantitatively reliable model-

ing tools represents a necessary step to unleash the full power offered by nanotechnology and to trigger

innovative ideas for the implementation of new device concepts.
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